Journal article 857 views
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
Chi-Hua Yu,
Zhao Qin,
Francisco Martin-Martinez,
Markus J. Buehler
ACS Nano, Volume: 13, Issue: 7, Pages: 7471 - 7482
Swansea University Author: Francisco Martin-Martinez
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1021/acsnano.9b02180
Abstract
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
Published in: | ACS Nano |
---|---|
ISSN: | 1936-0851 1936-086X |
Published: |
American Chemical Society (ACS)
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53481 |
first_indexed |
2020-03-25T19:47:04Z |
---|---|
last_indexed |
2020-10-16T03:06:25Z |
id |
cronfa53481 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-10-15T17:05:18.7806034</datestamp><bib-version>v2</bib-version><id>53481</id><entry>2019-06-05</entry><title>A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence</title><swanseaauthors><author><sid>a5907aac618ec107662c888f6ead0e4a</sid><firstname>Francisco</firstname><surname>Martin-Martinez</surname><name>Francisco Martin-Martinez</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-06-05</date><abstract/><type>Journal Article</type><journal>ACS Nano</journal><volume>13</volume><journalNumber>7</journalNumber><paginationStart>7471</paginationStart><paginationEnd>7482</paginationEnd><publisher>American Chemical Society (ACS)</publisher><issnPrint>1936-0851</issnPrint><issnElectronic>1936-086X</issnElectronic><keywords>protein; structural analysis; sonification; artificial intelligence; recurrent neural networks; molecular mechanics</keywords><publishedDay>23</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-07-23</publishedDate><doi>10.1021/acsnano.9b02180</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-15T17:05:18.7806034</lastEdited><Created>2019-06-05T00:00:00.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Chi-Hua</firstname><surname>Yu</surname><order>1</order></author><author><firstname>Zhao</firstname><surname>Qin</surname><order>2</order></author><author><firstname>Francisco</firstname><surname>Martin-Martinez</surname><order>3</order></author><author><firstname>Markus J.</firstname><surname>Buehler</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2020-10-15T17:05:18.7806034 v2 53481 2019-06-05 A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence a5907aac618ec107662c888f6ead0e4a Francisco Martin-Martinez Francisco Martin-Martinez true false 2019-06-05 Journal Article ACS Nano 13 7 7471 7482 American Chemical Society (ACS) 1936-0851 1936-086X protein; structural analysis; sonification; artificial intelligence; recurrent neural networks; molecular mechanics 23 7 2019 2019-07-23 10.1021/acsnano.9b02180 COLLEGE NANME COLLEGE CODE Swansea University 2020-10-15T17:05:18.7806034 2019-06-05T00:00:00.0000000 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Chi-Hua Yu 1 Zhao Qin 2 Francisco Martin-Martinez 3 Markus J. Buehler 4 |
title |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence |
spellingShingle |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence Francisco Martin-Martinez |
title_short |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence |
title_full |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence |
title_fullStr |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence |
title_full_unstemmed |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence |
title_sort |
A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence |
author_id_str_mv |
a5907aac618ec107662c888f6ead0e4a |
author_id_fullname_str_mv |
a5907aac618ec107662c888f6ead0e4a_***_Francisco Martin-Martinez |
author |
Francisco Martin-Martinez |
author2 |
Chi-Hua Yu Zhao Qin Francisco Martin-Martinez Markus J. Buehler |
format |
Journal article |
container_title |
ACS Nano |
container_volume |
13 |
container_issue |
7 |
container_start_page |
7471 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1936-0851 1936-086X |
doi_str_mv |
10.1021/acsnano.9b02180 |
publisher |
American Chemical Society (ACS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry |
document_store_str |
0 |
active_str |
0 |
published_date |
2019-07-23T20:03:58Z |
_version_ |
1822071339257692160 |
score |
11.048302 |