No Cover Image

Journal article 789 views 356 downloads

Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver

Bin Chen, Yanan Sun, Beatriz Barboza, Andrew Barron Orcid Logo, Chenfeng Li Orcid Logo

Engineering Fracture Mechanics, Volume: 229, Start page: 106928

Swansea University Authors: Bin Chen, Yanan Sun, Beatriz Barboza, Andrew Barron Orcid Logo, Chenfeng Li Orcid Logo

  • 53616.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (24.22MB)

Abstract

With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybri...

Full description

Published in: Engineering Fracture Mechanics
ISSN: 0013-7944
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53616
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-02-21T13:49:58Z
last_indexed 2023-01-11T14:31:15Z
id cronfa53616
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-07T16:38:29.5026767</datestamp><bib-version>v2</bib-version><id>53616</id><entry>2020-02-21</entry><title>Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver</title><swanseaauthors><author><sid>84c6830c30f7d443b3fbb890809e6242</sid><firstname>Bin</firstname><surname>Chen</surname><name>Bin Chen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>908037010ba1326733dce8fde3a8e31d</sid><firstname>Yanan</firstname><surname>Sun</surname><name>Yanan Sun</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ec9f4313e27cff49daaa0445a02148f5</sid><firstname>Beatriz</firstname><surname>Barboza</surname><name>Beatriz Barboza</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>92e452f20936d688d36f91c78574241d</sid><ORCID>0000-0002-2018-8288</ORCID><firstname>Andrew</firstname><surname>Barron</surname><name>Andrew Barron</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>82fe170d5ae2c840e538a36209e5a3ac</sid><ORCID>0000-0003-0441-211X</ORCID><firstname>Chenfeng</firstname><surname>Li</surname><name>Chenfeng Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-02-21</date><deptcode>FGSEN</deptcode><abstract>With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybrid solution scheme with a revised fluid model. Specifically, the formation deformation and phase field are solved using the finite element method (FEM), while the fluid flows are solved using the finite volume method (FVM). The proposed hybrid scheme is validated with the analytical solution for the toughness-dominated fracture propagation and is tested on the complex hydraulic fracturing process in a naturally fractured formation. Demonstrated by numerical examples, the proposed hybrid phase-field framework has several advantages: (1) it captures the effect of fluid pressure inside the fracture and reservoir more accurately than existing models; (2) it provides a sharper capture of formation fractures; (3) it avoids the nonphysical oscillation of fluid pressure when using a pure FEM solver; and (4) it has a superior performance in mesh and time step convergence.</abstract><type>Journal Article</type><journal>Engineering Fracture Mechanics</journal><volume>229</volume><journalNumber/><paginationStart>106928</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0013-7944</issnPrint><issnElectronic/><keywords>Phase field method; Fluid-driven fracture; Porous media; Finite element method; Finite volume method; Discrete fracture network</keywords><publishedDay>15</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-15</publishedDate><doi>10.1016/j.engfracmech.2020.106928</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-12-07T16:38:29.5026767</lastEdited><Created>2020-02-21T11:06:03.4546395</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Bin</firstname><surname>Chen</surname><order>1</order></author><author><firstname>Yanan</firstname><surname>Sun</surname><order>2</order></author><author><firstname>Beatriz</firstname><surname>Barboza</surname><order>3</order></author><author><firstname>Andrew</firstname><surname>Barron</surname><orcid>0000-0002-2018-8288</orcid><order>4</order></author><author><firstname>Chenfeng</firstname><surname>Li</surname><orcid>0000-0003-0441-211X</orcid><order>5</order></author></authors><documents><document><filename>53616__16782__b7b61d1d7d114f009ed65d0489b06f2f.pdf</filename><originalFilename>53616.pdf</originalFilename><uploaded>2020-03-06T10:33:40.1847153</uploaded><type>Output</type><contentLength>25397752</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-02-14T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-07T16:38:29.5026767 v2 53616 2020-02-21 Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver 84c6830c30f7d443b3fbb890809e6242 Bin Chen Bin Chen true false 908037010ba1326733dce8fde3a8e31d Yanan Sun Yanan Sun true false ec9f4313e27cff49daaa0445a02148f5 Beatriz Barboza Beatriz Barboza true false 92e452f20936d688d36f91c78574241d 0000-0002-2018-8288 Andrew Barron Andrew Barron true false 82fe170d5ae2c840e538a36209e5a3ac 0000-0003-0441-211X Chenfeng Li Chenfeng Li true false 2020-02-21 FGSEN With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybrid solution scheme with a revised fluid model. Specifically, the formation deformation and phase field are solved using the finite element method (FEM), while the fluid flows are solved using the finite volume method (FVM). The proposed hybrid scheme is validated with the analytical solution for the toughness-dominated fracture propagation and is tested on the complex hydraulic fracturing process in a naturally fractured formation. Demonstrated by numerical examples, the proposed hybrid phase-field framework has several advantages: (1) it captures the effect of fluid pressure inside the fracture and reservoir more accurately than existing models; (2) it provides a sharper capture of formation fractures; (3) it avoids the nonphysical oscillation of fluid pressure when using a pure FEM solver; and (4) it has a superior performance in mesh and time step convergence. Journal Article Engineering Fracture Mechanics 229 106928 Elsevier BV 0013-7944 Phase field method; Fluid-driven fracture; Porous media; Finite element method; Finite volume method; Discrete fracture network 15 4 2020 2020-04-15 10.1016/j.engfracmech.2020.106928 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2022-12-07T16:38:29.5026767 2020-02-21T11:06:03.4546395 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Bin Chen 1 Yanan Sun 2 Beatriz Barboza 3 Andrew Barron 0000-0002-2018-8288 4 Chenfeng Li 0000-0003-0441-211X 5 53616__16782__b7b61d1d7d114f009ed65d0489b06f2f.pdf 53616.pdf 2020-03-06T10:33:40.1847153 Output 25397752 application/pdf Accepted Manuscript true 2021-02-14T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
spellingShingle Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
Bin Chen
Yanan Sun
Beatriz Barboza
Andrew Barron
Chenfeng Li
title_short Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
title_full Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
title_fullStr Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
title_full_unstemmed Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
title_sort Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
author_id_str_mv 84c6830c30f7d443b3fbb890809e6242
908037010ba1326733dce8fde3a8e31d
ec9f4313e27cff49daaa0445a02148f5
92e452f20936d688d36f91c78574241d
82fe170d5ae2c840e538a36209e5a3ac
author_id_fullname_str_mv 84c6830c30f7d443b3fbb890809e6242_***_Bin Chen
908037010ba1326733dce8fde3a8e31d_***_Yanan Sun
ec9f4313e27cff49daaa0445a02148f5_***_Beatriz Barboza
92e452f20936d688d36f91c78574241d_***_Andrew Barron
82fe170d5ae2c840e538a36209e5a3ac_***_Chenfeng Li
author Bin Chen
Yanan Sun
Beatriz Barboza
Andrew Barron
Chenfeng Li
author2 Bin Chen
Yanan Sun
Beatriz Barboza
Andrew Barron
Chenfeng Li
format Journal article
container_title Engineering Fracture Mechanics
container_volume 229
container_start_page 106928
publishDate 2020
institution Swansea University
issn 0013-7944
doi_str_mv 10.1016/j.engfracmech.2020.106928
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 1
active_str 0
description With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybrid solution scheme with a revised fluid model. Specifically, the formation deformation and phase field are solved using the finite element method (FEM), while the fluid flows are solved using the finite volume method (FVM). The proposed hybrid scheme is validated with the analytical solution for the toughness-dominated fracture propagation and is tested on the complex hydraulic fracturing process in a naturally fractured formation. Demonstrated by numerical examples, the proposed hybrid phase-field framework has several advantages: (1) it captures the effect of fluid pressure inside the fracture and reservoir more accurately than existing models; (2) it provides a sharper capture of formation fractures; (3) it avoids the nonphysical oscillation of fluid pressure when using a pure FEM solver; and (4) it has a superior performance in mesh and time step convergence.
published_date 2020-04-15T04:06:39Z
_version_ 1763753485791133696
score 11.012678