No Cover Image

Journal article 79 views 4 downloads

Ammonium ion removal using activated zeolite and chitosan / Nurliyana Nasuha Safie; Abu Zahrim Yaser; Nidal Hilal

Asia-Pacific Journal of Chemical Engineering, Volume: 15, Issue: 3

Swansea University Author: Nidal, Hilal

Check full text

DOI (Published version): 10.1002/apj.2448

Abstract

Studies have previously been done on efficacies of chitosan and zeolite in ammonium ion (NH4+) removal. However, no study compares the adsorption performance of natural zeolite and activated natural zeolite with high and low molecular weight chitosan. Hence, this study investigates the potentials of...

Full description

Published in: Asia-Pacific Journal of Chemical Engineering
ISSN: 1932-2135 1932-2143
Published: Wiley 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53810
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Studies have previously been done on efficacies of chitosan and zeolite in ammonium ion (NH4+) removal. However, no study compares the adsorption performance of natural zeolite and activated natural zeolite with high and low molecular weight chitosan. Hence, this study investigates the potentials of natural zeolite (NZ), activated natural zeolite (ANZ), low molecular weight chitosan (LMWC) and high molecular weight chitosan (HMWC) in NH4+ removal. The characteristics of NZ, ANZ, LMWC, and HMWC such as functional groups, surface morphology, elemental composition, zeta potential and particle size were also investigated. The deposition of NH4+ on the surface of NZ and ANZ was confirmed with the absence of nitrogen by the adsorption spectrum of EDX and supported by the presence of an FTIR stretching band at 3500-3300 cm-1, as well as broader and less intense bands 1600 cm-1 after the adsorption for all the adsorbents. The particle size of LMWC, HMWC, NZ and ANZ were 98, 813, 22354 and 9826 nm, respectively. Meanwhile, after the activation process, the composition of O, Si, Al, Fe, Ca and Na were reduced. NH4+ batch adsorption was also studied. HMWC, NZ, and ANZ reached adsorption equilibrium at 15 h, meanwhile for LMWC, the equilibrium reached at t = 20 h. The adsorption capacity of LMWC, HMWC, NZ, and ANZ at an initial concentration of 50 mg/L were 0.769 mg/g, 0.331 mg/g, 2.162 mg/g and 2.937 mg/g respectively. ANZ had the highest adsorption capacity, which might be related to the reduction of cationic elements such as Fe, Ca and Na after the activation has increased the unbalanced negative charge within the crystal lattice of ANZ that can be neutralized by NH4+ hence led to higher adsorption. HMWC has the lowest adsorption capacity that may be due it is positively charged at pH 7 which would favor the adsorption of negatively charged species instead of positively charged species, NH4+.
Keywords: adsorption, ammonia, chitosan, natural, nitrogen, zeolite
Issue: 3