Conference Paper/Proceeding/Abstract 891 views 136 downloads
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales.
Fatemeh Torabi ,
Arron Lacey ,
Ashley Akbari ,
Daniel Harris,
Ronan Lyons ,
Julian Halcox ,
Michael Gravenor
ESC Heart & Stroke 2020
Swansea University Authors: Fatemeh Torabi , Arron Lacey , Ashley Akbari , Daniel Harris, Ronan Lyons , Julian Halcox , Michael Gravenor
-
PDF | Author's Original
Download (1.05MB)
DOI (Published version): 10.13140/RG.2.2.14854.11840
Abstract
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales.
Published in: | ESC Heart & Stroke 2020 |
---|---|
Published: |
Barcelona
2020
|
Online Access: |
https://escheart-stroke2020.org/programme/ |
URI: | https://cronfa.swan.ac.uk/Record/cronfa53813 |
first_indexed |
2020-03-12T19:40:56Z |
---|---|
last_indexed |
2020-10-10T03:08:00Z |
id |
cronfa53813 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-10-09T19:20:37.6058176</datestamp><bib-version>v2</bib-version><id>53813</id><entry>2020-01-24</entry><title>Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales.</title><swanseaauthors><author><sid>f569591e1bfb0e405b8091f99fec45d3</sid><ORCID>0000-0002-5853-4625</ORCID><firstname>Fatemeh</firstname><surname>Torabi</surname><name>Fatemeh Torabi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b69d245574e754d2637cc9e76379fe11</sid><ORCID>0000-0001-7983-8073</ORCID><firstname>Arron</firstname><surname>Lacey</surname><name>Arron Lacey</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e60c9c73b645f0e8033ae26fa8e634b8</sid><firstname>Daniel</firstname><surname>Harris</surname><name>Daniel Harris</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>83efcf2a9dfcf8b55586999d3d152ac6</sid><ORCID>0000-0001-5225-000X</ORCID><firstname>Ronan</firstname><surname>Lyons</surname><name>Ronan Lyons</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3676f695eeda169d0f8c618adf27c04b</sid><ORCID>0000-0001-6926-2947</ORCID><firstname>Julian</firstname><surname>Halcox</surname><name>Julian Halcox</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>70a544476ce62ba78502ce463c2500d6</sid><ORCID>0000-0003-0710-0947</ORCID><firstname>Michael</firstname><surname>Gravenor</surname><name>Michael Gravenor</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-01-24</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>ESC Heart & Stroke 2020</journal><publisher/><placeOfPublication>Barcelona</placeOfPublication><keywords/><publishedDay>24</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-01-24</publishedDate><doi>10.13140/RG.2.2.14854.11840</doi><url>https://escheart-stroke2020.org/programme/</url><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-09T19:20:37.6058176</lastEdited><Created>2020-01-24T00:00:00.0000000</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Fatemeh</firstname><surname>Torabi</surname><orcid>0000-0002-5853-4625</orcid><order>1</order></author><author><firstname>Arron</firstname><surname>Lacey</surname><orcid>0000-0001-7983-8073</orcid><order>2</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>3</order></author><author><firstname>Daniel</firstname><surname>Harris</surname><order>4</order></author><author><firstname>Ronan</firstname><surname>Lyons</surname><orcid>0000-0001-5225-000X</orcid><order>5</order></author><author><firstname>Julian</firstname><surname>Halcox</surname><orcid>0000-0001-6926-2947</orcid><order>6</order></author><author><firstname>Michael</firstname><surname>Gravenor</surname><orcid>0000-0003-0710-0947</orcid><order>7</order></author></authors><documents><document><filename>53813__16839__0cd85122692544dd8d8b5105dffd2bf6.pdf</filename><originalFilename>Poster-HASBLED-20200114.pdf</originalFilename><uploaded>2020-03-12T12:50:42.2608505</uploaded><type>Output</type><contentLength>1099209</contentLength><contentType>application/pdf</contentType><version>Author's Original</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-10-09T19:20:37.6058176 v2 53813 2020-01-24 Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. f569591e1bfb0e405b8091f99fec45d3 0000-0002-5853-4625 Fatemeh Torabi Fatemeh Torabi true false b69d245574e754d2637cc9e76379fe11 0000-0001-7983-8073 Arron Lacey Arron Lacey true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false e60c9c73b645f0e8033ae26fa8e634b8 Daniel Harris Daniel Harris true false 83efcf2a9dfcf8b55586999d3d152ac6 0000-0001-5225-000X Ronan Lyons Ronan Lyons true false 3676f695eeda169d0f8c618adf27c04b 0000-0001-6926-2947 Julian Halcox Julian Halcox true false 70a544476ce62ba78502ce463c2500d6 0000-0003-0710-0947 Michael Gravenor Michael Gravenor true false 2020-01-24 MEDS Conference Paper/Proceeding/Abstract ESC Heart & Stroke 2020 Barcelona 24 1 2020 2020-01-24 10.13140/RG.2.2.14854.11840 https://escheart-stroke2020.org/programme/ COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2020-10-09T19:20:37.6058176 2020-01-24T00:00:00.0000000 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Fatemeh Torabi 0000-0002-5853-4625 1 Arron Lacey 0000-0001-7983-8073 2 Ashley Akbari 0000-0003-0814-0801 3 Daniel Harris 4 Ronan Lyons 0000-0001-5225-000X 5 Julian Halcox 0000-0001-6926-2947 6 Michael Gravenor 0000-0003-0710-0947 7 53813__16839__0cd85122692544dd8d8b5105dffd2bf6.pdf Poster-HASBLED-20200114.pdf 2020-03-12T12:50:42.2608505 Output 1099209 application/pdf Author's Original true true eng |
title |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. |
spellingShingle |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. Fatemeh Torabi Arron Lacey Ashley Akbari Daniel Harris Ronan Lyons Julian Halcox Michael Gravenor |
title_short |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. |
title_full |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. |
title_fullStr |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. |
title_full_unstemmed |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. |
title_sort |
Machine learning approaches in for prediction of 1-year risk of major bleeding events in anticoagulated atrial fibrillation patients with atrial fibrillation in Wales. |
author_id_str_mv |
f569591e1bfb0e405b8091f99fec45d3 b69d245574e754d2637cc9e76379fe11 aa1b025ec0243f708bb5eb0a93d6fb52 e60c9c73b645f0e8033ae26fa8e634b8 83efcf2a9dfcf8b55586999d3d152ac6 3676f695eeda169d0f8c618adf27c04b 70a544476ce62ba78502ce463c2500d6 |
author_id_fullname_str_mv |
f569591e1bfb0e405b8091f99fec45d3_***_Fatemeh Torabi b69d245574e754d2637cc9e76379fe11_***_Arron Lacey aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari e60c9c73b645f0e8033ae26fa8e634b8_***_Daniel Harris 83efcf2a9dfcf8b55586999d3d152ac6_***_Ronan Lyons 3676f695eeda169d0f8c618adf27c04b_***_Julian Halcox 70a544476ce62ba78502ce463c2500d6_***_Michael Gravenor |
author |
Fatemeh Torabi Arron Lacey Ashley Akbari Daniel Harris Ronan Lyons Julian Halcox Michael Gravenor |
author2 |
Fatemeh Torabi Arron Lacey Ashley Akbari Daniel Harris Ronan Lyons Julian Halcox Michael Gravenor |
format |
Conference Paper/Proceeding/Abstract |
container_title |
ESC Heart & Stroke 2020 |
publishDate |
2020 |
institution |
Swansea University |
doi_str_mv |
10.13140/RG.2.2.14854.11840 |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
url |
https://escheart-stroke2020.org/programme/ |
document_store_str |
1 |
active_str |
0 |
published_date |
2020-01-24T02:05:40Z |
_version_ |
1821278722005663744 |
score |
11.047306 |