Journal article 946 views 465 downloads
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells
Hyojung Cha,
Yizhen Zheng,
Yifan Dong,
Hyun Hwi Lee,
Jiaying Wu,
Helen Bristow,
Jiangbin Zhang,
Harrison Lee,
Wing Chung Tsoi ,
Artem A. Bakulin,
Iain McCulloch,
James Durrant
Advanced Energy Materials, Volume: 10, Issue: 38, Start page: 2001149
Swansea University Authors: Harrison Lee, Wing Chung Tsoi , James Durrant
-
PDF | Accepted Manuscript
Download (1.43MB)
DOI (Published version): 10.1002/aenm.202001149
Abstract
Herein the morphology and exciton/charge carrier dynamics in bulk heterojunctions (BHJs) of the donor polymer PTQ10 and molecular acceptor IDIC are investigated. PTQ10:IDIC BHJs are shown to be particularly promising for low cost organic solar cells (OSCs). It is found that both PTQ10 and IDIC show...
Published in: | Advanced Energy Materials |
---|---|
ISSN: | 1614-6832 1614-6840 |
Published: |
Wiley
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa54866 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-08-04T12:47:33Z |
---|---|
last_indexed |
2020-10-27T04:07:57Z |
id |
cronfa54866 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-10-26T16:23:12.4047652</datestamp><bib-version>v2</bib-version><id>54866</id><entry>2020-08-04</entry><title>Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells</title><swanseaauthors><author><sid>0ef65494d0dda7f6aea5ead8bb6ce466</sid><ORCID/><firstname>Harrison</firstname><surname>Lee</surname><name>Harrison Lee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-04</date><deptcode>MTLS</deptcode><abstract>Herein the morphology and exciton/charge carrier dynamics in bulk heterojunctions (BHJs) of the donor polymer PTQ10 and molecular acceptor IDIC are investigated. PTQ10:IDIC BHJs are shown to be particularly promising for low cost organic solar cells (OSCs). It is found that both PTQ10 and IDIC show remarkably high crystallinity in optimized BHJs, with GIWAXS data indicating pi‐pi stacking coherence lengths of up to 8 nm. Exciton‐exciton annihilation studies indicate long exciton diffusion lengths for both neat materials (19 nm for PTQ10 and 9.5 nm for IDIC), enabling efficient exciton separation with half lives of 1 and 3 ps, despite the high degree of phase segregation in this blend. Transient absorption data indicate exciton separation leads to the formation of two spectrally distinct species, assigned to interfacial charge transfer (CT) states and separated charges. CT state decay is correlated with the appearance of additional separate charges, indicating relatively efficient CT state dissociation, attributed to the high crystallinity of this blend. The results emphasize the potential for high material crystallinity to enhance charge separation and collection in OSCs, but also that long exciton diffusion lengths are likely to be essential for efficient exciton separation in such high crystallinity devices.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>10</volume><journalNumber>38</journalNumber><paginationStart>2001149</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords>organic solar cells; nonfullerene acceptor; charge separation; recombination; phase separation</keywords><publishedDay>13</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-10-13</publishedDate><doi>10.1002/aenm.202001149</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-26T16:23:12.4047652</lastEdited><Created>2020-08-04T13:44:20.3317055</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Hyojung</firstname><surname>Cha</surname><order>1</order></author><author><firstname>Yizhen</firstname><surname>Zheng</surname><order>2</order></author><author><firstname>Yifan</firstname><surname>Dong</surname><order>3</order></author><author><firstname>Hyun Hwi</firstname><surname>Lee</surname><order>4</order></author><author><firstname>Jiaying</firstname><surname>Wu</surname><order>5</order></author><author><firstname>Helen</firstname><surname>Bristow</surname><order>6</order></author><author><firstname>Jiangbin</firstname><surname>Zhang</surname><order>7</order></author><author><firstname>Harrison</firstname><surname>Lee</surname><orcid/><order>8</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>9</order></author><author><firstname>Artem A.</firstname><surname>Bakulin</surname><order>10</order></author><author><firstname>Iain</firstname><surname>McCulloch</surname><order>11</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>12</order></author></authors><documents><document><filename>54866__17871__df41972ca29d46d1a82de6b61ab1a06b.pdf</filename><originalFilename>54866.pdf</originalFilename><uploaded>2020-08-06T10:37:06.8797828</uploaded><type>Output</type><contentLength>1494797</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-07-21T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>English</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-10-26T16:23:12.4047652 v2 54866 2020-08-04 Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells 0ef65494d0dda7f6aea5ead8bb6ce466 Harrison Lee Harrison Lee true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2020-08-04 MTLS Herein the morphology and exciton/charge carrier dynamics in bulk heterojunctions (BHJs) of the donor polymer PTQ10 and molecular acceptor IDIC are investigated. PTQ10:IDIC BHJs are shown to be particularly promising for low cost organic solar cells (OSCs). It is found that both PTQ10 and IDIC show remarkably high crystallinity in optimized BHJs, with GIWAXS data indicating pi‐pi stacking coherence lengths of up to 8 nm. Exciton‐exciton annihilation studies indicate long exciton diffusion lengths for both neat materials (19 nm for PTQ10 and 9.5 nm for IDIC), enabling efficient exciton separation with half lives of 1 and 3 ps, despite the high degree of phase segregation in this blend. Transient absorption data indicate exciton separation leads to the formation of two spectrally distinct species, assigned to interfacial charge transfer (CT) states and separated charges. CT state decay is correlated with the appearance of additional separate charges, indicating relatively efficient CT state dissociation, attributed to the high crystallinity of this blend. The results emphasize the potential for high material crystallinity to enhance charge separation and collection in OSCs, but also that long exciton diffusion lengths are likely to be essential for efficient exciton separation in such high crystallinity devices. Journal Article Advanced Energy Materials 10 38 2001149 Wiley 1614-6832 1614-6840 organic solar cells; nonfullerene acceptor; charge separation; recombination; phase separation 13 10 2020 2020-10-13 10.1002/aenm.202001149 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-10-26T16:23:12.4047652 2020-08-04T13:44:20.3317055 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Hyojung Cha 1 Yizhen Zheng 2 Yifan Dong 3 Hyun Hwi Lee 4 Jiaying Wu 5 Helen Bristow 6 Jiangbin Zhang 7 Harrison Lee 8 Wing Chung Tsoi 0000-0003-3836-5139 9 Artem A. Bakulin 10 Iain McCulloch 11 James Durrant 0000-0001-8353-7345 12 54866__17871__df41972ca29d46d1a82de6b61ab1a06b.pdf 54866.pdf 2020-08-06T10:37:06.8797828 Output 1494797 application/pdf Accepted Manuscript true 2021-07-21T00:00:00.0000000 true English |
title |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells |
spellingShingle |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells Harrison Lee Wing Chung Tsoi James Durrant |
title_short |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells |
title_full |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells |
title_fullStr |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells |
title_full_unstemmed |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells |
title_sort |
Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells |
author_id_str_mv |
0ef65494d0dda7f6aea5ead8bb6ce466 7e5f541df6635a9a8e1a579ff2de5d56 f3dd64bc260e5c07adfa916c27dbd58a |
author_id_fullname_str_mv |
0ef65494d0dda7f6aea5ead8bb6ce466_***_Harrison Lee 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant |
author |
Harrison Lee Wing Chung Tsoi James Durrant |
author2 |
Hyojung Cha Yizhen Zheng Yifan Dong Hyun Hwi Lee Jiaying Wu Helen Bristow Jiangbin Zhang Harrison Lee Wing Chung Tsoi Artem A. Bakulin Iain McCulloch James Durrant |
format |
Journal article |
container_title |
Advanced Energy Materials |
container_volume |
10 |
container_issue |
38 |
container_start_page |
2001149 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1614-6832 1614-6840 |
doi_str_mv |
10.1002/aenm.202001149 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Herein the morphology and exciton/charge carrier dynamics in bulk heterojunctions (BHJs) of the donor polymer PTQ10 and molecular acceptor IDIC are investigated. PTQ10:IDIC BHJs are shown to be particularly promising for low cost organic solar cells (OSCs). It is found that both PTQ10 and IDIC show remarkably high crystallinity in optimized BHJs, with GIWAXS data indicating pi‐pi stacking coherence lengths of up to 8 nm. Exciton‐exciton annihilation studies indicate long exciton diffusion lengths for both neat materials (19 nm for PTQ10 and 9.5 nm for IDIC), enabling efficient exciton separation with half lives of 1 and 3 ps, despite the high degree of phase segregation in this blend. Transient absorption data indicate exciton separation leads to the formation of two spectrally distinct species, assigned to interfacial charge transfer (CT) states and separated charges. CT state decay is correlated with the appearance of additional separate charges, indicating relatively efficient CT state dissociation, attributed to the high crystallinity of this blend. The results emphasize the potential for high material crystallinity to enhance charge separation and collection in OSCs, but also that long exciton diffusion lengths are likely to be essential for efficient exciton separation in such high crystallinity devices. |
published_date |
2020-10-13T04:08:40Z |
_version_ |
1763753612696092672 |
score |
11.0299 |