No Cover Image

Journal article 373 views 93 downloads

Low dimensional nanostructures of fast ion conducting lithium nitride

Nuria Tapia-Ruiz, Alexandra G. Gordon, Catherine M. Jewell, Hannah K. Edwards, Charlie Dunnill Orcid Logo, James M. Blackman, Colin P. Snape, Paul D. Brown, Ian MacLaren, Matteo Baldoni, Elena Besley, Jeremy J. Titman, Duncan H. Gregory

Nature Communications, Volume: 11, Issue: 1

Swansea University Author: Charlie Dunnill Orcid Logo

  • 54892.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).

    Download (1.74MB)

Abstract

As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hex...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54892
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-09-08T11:08:52Z
last_indexed 2022-04-28T03:23:15Z
id cronfa54892
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-04-27T12:19:55.9887690</datestamp><bib-version>v2</bib-version><id>54892</id><entry>2020-08-06</entry><title>Low dimensional nanostructures of fast ion conducting lithium nitride</title><swanseaauthors><author><sid>0c4af8958eda0d2e914a5edc3210cd9e</sid><ORCID>0000-0003-4052-6931</ORCID><firstname>Charlie</firstname><surname>Dunnill</surname><name>Charlie Dunnill</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-06</date><deptcode>CHEG</deptcode><abstract>As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>11</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1038/s41467-020-17951-6</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-04-27T12:19:55.9887690</lastEdited><Created>2020-08-06T14:23:44.7824986</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Nuria</firstname><surname>Tapia-Ruiz</surname><order>1</order></author><author><firstname>Alexandra G.</firstname><surname>Gordon</surname><order>2</order></author><author><firstname>Catherine M.</firstname><surname>Jewell</surname><order>3</order></author><author><firstname>Hannah K.</firstname><surname>Edwards</surname><order>4</order></author><author><firstname>Charlie</firstname><surname>Dunnill</surname><orcid>0000-0003-4052-6931</orcid><order>5</order></author><author><firstname>James M.</firstname><surname>Blackman</surname><order>6</order></author><author><firstname>Colin P.</firstname><surname>Snape</surname><order>7</order></author><author><firstname>Paul D.</firstname><surname>Brown</surname><order>8</order></author><author><firstname>Ian</firstname><surname>MacLaren</surname><order>9</order></author><author><firstname>Matteo</firstname><surname>Baldoni</surname><order>10</order></author><author><firstname>Elena</firstname><surname>Besley</surname><order>11</order></author><author><firstname>Jeremy J.</firstname><surname>Titman</surname><order>12</order></author><author><firstname>Duncan H.</firstname><surname>Gregory</surname><order>13</order></author></authors><documents><document><filename>54892__18130__3298ccede4414b72aa4ad13f2db631d3.pdf</filename><originalFilename>54892.pdf</originalFilename><uploaded>2020-09-08T12:08:14.2608216</uploaded><type>Output</type><contentLength>1829122</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-04-27T12:19:55.9887690 v2 54892 2020-08-06 Low dimensional nanostructures of fast ion conducting lithium nitride 0c4af8958eda0d2e914a5edc3210cd9e 0000-0003-4052-6931 Charlie Dunnill Charlie Dunnill true false 2020-08-06 CHEG As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale. Journal Article Nature Communications 11 1 Springer Science and Business Media LLC 2041-1723 1 12 2020 2020-12-01 10.1038/s41467-020-17951-6 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2022-04-27T12:19:55.9887690 2020-08-06T14:23:44.7824986 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Nuria Tapia-Ruiz 1 Alexandra G. Gordon 2 Catherine M. Jewell 3 Hannah K. Edwards 4 Charlie Dunnill 0000-0003-4052-6931 5 James M. Blackman 6 Colin P. Snape 7 Paul D. Brown 8 Ian MacLaren 9 Matteo Baldoni 10 Elena Besley 11 Jeremy J. Titman 12 Duncan H. Gregory 13 54892__18130__3298ccede4414b72aa4ad13f2db631d3.pdf 54892.pdf 2020-09-08T12:08:14.2608216 Output 1829122 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Low dimensional nanostructures of fast ion conducting lithium nitride
spellingShingle Low dimensional nanostructures of fast ion conducting lithium nitride
Charlie Dunnill
title_short Low dimensional nanostructures of fast ion conducting lithium nitride
title_full Low dimensional nanostructures of fast ion conducting lithium nitride
title_fullStr Low dimensional nanostructures of fast ion conducting lithium nitride
title_full_unstemmed Low dimensional nanostructures of fast ion conducting lithium nitride
title_sort Low dimensional nanostructures of fast ion conducting lithium nitride
author_id_str_mv 0c4af8958eda0d2e914a5edc3210cd9e
author_id_fullname_str_mv 0c4af8958eda0d2e914a5edc3210cd9e_***_Charlie Dunnill
author Charlie Dunnill
author2 Nuria Tapia-Ruiz
Alexandra G. Gordon
Catherine M. Jewell
Hannah K. Edwards
Charlie Dunnill
James M. Blackman
Colin P. Snape
Paul D. Brown
Ian MacLaren
Matteo Baldoni
Elena Besley
Jeremy J. Titman
Duncan H. Gregory
format Journal article
container_title Nature Communications
container_volume 11
container_issue 1
publishDate 2020
institution Swansea University
issn 2041-1723
doi_str_mv 10.1038/s41467-020-17951-6
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale.
published_date 2020-12-01T04:08:43Z
_version_ 1763753615513616384
score 11.0127