Journal article 467 views 109 downloads
Low dimensional nanostructures of fast ion conducting lithium nitride
Nature Communications, Volume: 11, Issue: 1
Swansea University Author: Charlie Dunnill
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).
Download (1.74MB)
DOI (Published version): 10.1038/s41467-020-17951-6
Abstract
As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hex...
Published in: | Nature Communications |
---|---|
ISSN: | 2041-1723 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa54892 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-09-08T11:08:52Z |
---|---|
last_indexed |
2022-04-28T03:23:15Z |
id |
cronfa54892 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-04-27T12:19:55.9887690</datestamp><bib-version>v2</bib-version><id>54892</id><entry>2020-08-06</entry><title>Low dimensional nanostructures of fast ion conducting lithium nitride</title><swanseaauthors><author><sid>0c4af8958eda0d2e914a5edc3210cd9e</sid><ORCID>0000-0003-4052-6931</ORCID><firstname>Charlie</firstname><surname>Dunnill</surname><name>Charlie Dunnill</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-06</date><deptcode>CHEG</deptcode><abstract>As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>11</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1038/s41467-020-17951-6</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-04-27T12:19:55.9887690</lastEdited><Created>2020-08-06T14:23:44.7824986</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Nuria</firstname><surname>Tapia-Ruiz</surname><order>1</order></author><author><firstname>Alexandra G.</firstname><surname>Gordon</surname><order>2</order></author><author><firstname>Catherine M.</firstname><surname>Jewell</surname><order>3</order></author><author><firstname>Hannah K.</firstname><surname>Edwards</surname><order>4</order></author><author><firstname>Charlie</firstname><surname>Dunnill</surname><orcid>0000-0003-4052-6931</orcid><order>5</order></author><author><firstname>James M.</firstname><surname>Blackman</surname><order>6</order></author><author><firstname>Colin P.</firstname><surname>Snape</surname><order>7</order></author><author><firstname>Paul D.</firstname><surname>Brown</surname><order>8</order></author><author><firstname>Ian</firstname><surname>MacLaren</surname><order>9</order></author><author><firstname>Matteo</firstname><surname>Baldoni</surname><order>10</order></author><author><firstname>Elena</firstname><surname>Besley</surname><order>11</order></author><author><firstname>Jeremy J.</firstname><surname>Titman</surname><order>12</order></author><author><firstname>Duncan H.</firstname><surname>Gregory</surname><order>13</order></author></authors><documents><document><filename>54892__18130__3298ccede4414b72aa4ad13f2db631d3.pdf</filename><originalFilename>54892.pdf</originalFilename><uploaded>2020-09-08T12:08:14.2608216</uploaded><type>Output</type><contentLength>1829122</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-04-27T12:19:55.9887690 v2 54892 2020-08-06 Low dimensional nanostructures of fast ion conducting lithium nitride 0c4af8958eda0d2e914a5edc3210cd9e 0000-0003-4052-6931 Charlie Dunnill Charlie Dunnill true false 2020-08-06 CHEG As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale. Journal Article Nature Communications 11 1 Springer Science and Business Media LLC 2041-1723 1 12 2020 2020-12-01 10.1038/s41467-020-17951-6 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2022-04-27T12:19:55.9887690 2020-08-06T14:23:44.7824986 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Nuria Tapia-Ruiz 1 Alexandra G. Gordon 2 Catherine M. Jewell 3 Hannah K. Edwards 4 Charlie Dunnill 0000-0003-4052-6931 5 James M. Blackman 6 Colin P. Snape 7 Paul D. Brown 8 Ian MacLaren 9 Matteo Baldoni 10 Elena Besley 11 Jeremy J. Titman 12 Duncan H. Gregory 13 54892__18130__3298ccede4414b72aa4ad13f2db631d3.pdf 54892.pdf 2020-09-08T12:08:14.2608216 Output 1829122 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Low dimensional nanostructures of fast ion conducting lithium nitride |
spellingShingle |
Low dimensional nanostructures of fast ion conducting lithium nitride Charlie Dunnill |
title_short |
Low dimensional nanostructures of fast ion conducting lithium nitride |
title_full |
Low dimensional nanostructures of fast ion conducting lithium nitride |
title_fullStr |
Low dimensional nanostructures of fast ion conducting lithium nitride |
title_full_unstemmed |
Low dimensional nanostructures of fast ion conducting lithium nitride |
title_sort |
Low dimensional nanostructures of fast ion conducting lithium nitride |
author_id_str_mv |
0c4af8958eda0d2e914a5edc3210cd9e |
author_id_fullname_str_mv |
0c4af8958eda0d2e914a5edc3210cd9e_***_Charlie Dunnill |
author |
Charlie Dunnill |
author2 |
Nuria Tapia-Ruiz Alexandra G. Gordon Catherine M. Jewell Hannah K. Edwards Charlie Dunnill James M. Blackman Colin P. Snape Paul D. Brown Ian MacLaren Matteo Baldoni Elena Besley Jeremy J. Titman Duncan H. Gregory |
format |
Journal article |
container_title |
Nature Communications |
container_volume |
11 |
container_issue |
1 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2041-1723 |
doi_str_mv |
10.1038/s41467-020-17951-6 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale. |
published_date |
2020-12-01T04:08:43Z |
_version_ |
1763753615513616384 |
score |
11.03559 |