No Cover Image

Journal article 802 views 236 downloads

Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity

Christopher Barnett, James McCormack, Eva M. Deemer, Chris Evans, Jonathan Evans, Alvin Orbaek White Orcid Logo, Peter Dunstan Orcid Logo, Russell R. Chianelli, Richard Cobley Orcid Logo, Andrew Barron Orcid Logo

The Journal of Physical Chemistry C, Volume: 124, Issue: 34, Pages: 18777 - 18783

Swansea University Authors: Christopher Barnett, James McCormack, Chris Evans, Jonathan Evans, Alvin Orbaek White Orcid Logo, Peter Dunstan Orcid Logo, Richard Cobley Orcid Logo, Andrew Barron Orcid Logo

Abstract

Herein, we present an experimental/computational approach for probing the interaction between metal contacts and carbon nanotubes (CNTs) with regard to creating the most efficient, low resistance junction. Tungsten probes have been coated with copper or chromium and the efficiency of nanocontact tra...

Full description

Published in: The Journal of Physical Chemistry C
ISSN: 1932-7447 1932-7455
Published: American Chemical Society (ACS) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55002
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-08-18T09:41:03Z
last_indexed 2020-11-05T04:13:21Z
id cronfa55002
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-11-04T16:08:39.7453542</datestamp><bib-version>v2</bib-version><id>55002</id><entry>2020-08-18</entry><title>Enhancement of Multiwalled Carbon Nanotubes&#x2019; Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity</title><swanseaauthors><author><sid>3cc4b7c0dcf59d3ff31f9f13b0e5a831</sid><firstname>Christopher</firstname><surname>Barnett</surname><name>Christopher Barnett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0c278a5f9b1cc3b79781ecb37300e86e</sid><firstname>James</firstname><surname>McCormack</surname><name>James McCormack</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2ac26abca80f9a12578e6711eb35df5b</sid><firstname>Chris</firstname><surname>Evans</surname><name>Chris Evans</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3a4152e0539a5ba25b3bbb9f76033cf7</sid><ORCID/><firstname>Jonathan</firstname><surname>Evans</surname><name>Jonathan Evans</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>8414a23650d4403fdfe1a735dbd2e24e</sid><ORCID>0000-0001-6338-5970</ORCID><firstname>Alvin</firstname><surname>Orbaek White</surname><name>Alvin Orbaek White</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>eada15d4d33fcb3dfddcff43f1323bd6</sid><ORCID>0000-0002-4337-4307</ORCID><firstname>Peter</firstname><surname>Dunstan</surname><name>Peter Dunstan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2ce7e1dd9006164425415a35fa452494</sid><ORCID>0000-0003-4833-8492</ORCID><firstname>Richard</firstname><surname>Cobley</surname><name>Richard Cobley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>92e452f20936d688d36f91c78574241d</sid><ORCID>0000-0002-2018-8288</ORCID><firstname>Andrew</firstname><surname>Barron</surname><name>Andrew Barron</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-08-18</date><deptcode>FGSEN</deptcode><abstract>Herein, we present an experimental/computational approach for probing the interaction between metal contacts and carbon nanotubes (CNTs) with regard to creating the most efficient, low resistance junction. Tungsten probes have been coated with copper or chromium and the efficiency of nanocontact transport into multiwalled carbon nanotubes (MWCNTs) has been investigated experimentally, using scanning tunneling spectroscopy and nanoscale two-point probe I-V measurements, and in silico, employing DFT calculations. Experimental I-V measurements suggest the relative conductivity of the metal-CNT interaction to be Cu &gt; W &gt; Cr. It has been found that copper when in contact with MWCNTs results in a high density of states at the Fermi level, which contributes states to the conduction band. It was observed that the density of states also increased when chromium and tungsten probes were in contact with CNTs; however, in these cases the density of states increase would only occur under high voltage/high temperature situations. This is demonstrated by an increase in the experimental electrical resistance when compared to the copper probe. These results suggest that in future copper tips should be used when carrying out all intrinsic conduction measurements on CNTs, and they also provide a rationale for the ultraconductivity of Cu-CNT and Cu-graphene composites.</abstract><type>Journal Article</type><journal>The Journal of Physical Chemistry C</journal><volume>124</volume><journalNumber>34</journalNumber><paginationStart>18777</paginationStart><paginationEnd>18783</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1932-7447</issnPrint><issnElectronic>1932-7455</issnElectronic><keywords/><publishedDay>27</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-08-27</publishedDate><doi>10.1021/acs.jpcc.0c05000</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-11-04T16:08:39.7453542</lastEdited><Created>2020-08-18T10:39:10.4332256</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Christopher</firstname><surname>Barnett</surname><order>1</order></author><author><firstname>James</firstname><surname>McCormack</surname><order>2</order></author><author><firstname>Eva M.</firstname><surname>Deemer</surname><order>3</order></author><author><firstname>Chris</firstname><surname>Evans</surname><order>4</order></author><author><firstname>Jonathan</firstname><surname>Evans</surname><orcid/><order>5</order></author><author><firstname>Alvin</firstname><surname>Orbaek White</surname><orcid>0000-0001-6338-5970</orcid><order>6</order></author><author><firstname>Peter</firstname><surname>Dunstan</surname><orcid>0000-0002-4337-4307</orcid><order>7</order></author><author><firstname>Russell R.</firstname><surname>Chianelli</surname><order>8</order></author><author><firstname>Richard</firstname><surname>Cobley</surname><orcid>0000-0003-4833-8492</orcid><order>9</order></author><author><firstname>Andrew</firstname><surname>Barron</surname><orcid>0000-0002-2018-8288</orcid><order>10</order></author></authors><documents><document><filename>55002__17967__7024ab2087ec41658155eb007e942cef.pdf</filename><originalFilename>55002SI.pdf</originalFilename><uploaded>2020-08-18T10:42:52.9568914</uploaded><type>Output</type><contentLength>469692</contentLength><contentType>application/pdf</contentType><version>Supplemental material</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-07-31T00:00:00.0000000</embargoDate><documentNotes>Supporting Information</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document><document><filename>55002__18207__9bc2196fac68428494294a524d9a427f.pdf</filename><originalFilename>55002.pdf</originalFilename><uploaded>2020-09-18T17:00:55.3920559</uploaded><type>Output</type><contentLength>729101</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-07-31T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-11-04T16:08:39.7453542 v2 55002 2020-08-18 Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity 3cc4b7c0dcf59d3ff31f9f13b0e5a831 Christopher Barnett Christopher Barnett true false 0c278a5f9b1cc3b79781ecb37300e86e James McCormack James McCormack true false 2ac26abca80f9a12578e6711eb35df5b Chris Evans Chris Evans true false 3a4152e0539a5ba25b3bbb9f76033cf7 Jonathan Evans Jonathan Evans true false 8414a23650d4403fdfe1a735dbd2e24e 0000-0001-6338-5970 Alvin Orbaek White Alvin Orbaek White true false eada15d4d33fcb3dfddcff43f1323bd6 0000-0002-4337-4307 Peter Dunstan Peter Dunstan true false 2ce7e1dd9006164425415a35fa452494 0000-0003-4833-8492 Richard Cobley Richard Cobley true false 92e452f20936d688d36f91c78574241d 0000-0002-2018-8288 Andrew Barron Andrew Barron true false 2020-08-18 FGSEN Herein, we present an experimental/computational approach for probing the interaction between metal contacts and carbon nanotubes (CNTs) with regard to creating the most efficient, low resistance junction. Tungsten probes have been coated with copper or chromium and the efficiency of nanocontact transport into multiwalled carbon nanotubes (MWCNTs) has been investigated experimentally, using scanning tunneling spectroscopy and nanoscale two-point probe I-V measurements, and in silico, employing DFT calculations. Experimental I-V measurements suggest the relative conductivity of the metal-CNT interaction to be Cu > W > Cr. It has been found that copper when in contact with MWCNTs results in a high density of states at the Fermi level, which contributes states to the conduction band. It was observed that the density of states also increased when chromium and tungsten probes were in contact with CNTs; however, in these cases the density of states increase would only occur under high voltage/high temperature situations. This is demonstrated by an increase in the experimental electrical resistance when compared to the copper probe. These results suggest that in future copper tips should be used when carrying out all intrinsic conduction measurements on CNTs, and they also provide a rationale for the ultraconductivity of Cu-CNT and Cu-graphene composites. Journal Article The Journal of Physical Chemistry C 124 34 18777 18783 American Chemical Society (ACS) 1932-7447 1932-7455 27 8 2020 2020-08-27 10.1021/acs.jpcc.0c05000 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2020-11-04T16:08:39.7453542 2020-08-18T10:39:10.4332256 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Christopher Barnett 1 James McCormack 2 Eva M. Deemer 3 Chris Evans 4 Jonathan Evans 5 Alvin Orbaek White 0000-0001-6338-5970 6 Peter Dunstan 0000-0002-4337-4307 7 Russell R. Chianelli 8 Richard Cobley 0000-0003-4833-8492 9 Andrew Barron 0000-0002-2018-8288 10 55002__17967__7024ab2087ec41658155eb007e942cef.pdf 55002SI.pdf 2020-08-18T10:42:52.9568914 Output 469692 application/pdf Supplemental material true 2021-07-31T00:00:00.0000000 Supporting Information true eng 55002__18207__9bc2196fac68428494294a524d9a427f.pdf 55002.pdf 2020-09-18T17:00:55.3920559 Output 729101 application/pdf Accepted Manuscript true 2021-07-31T00:00:00.0000000 true eng
title Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
spellingShingle Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
Christopher Barnett
James McCormack
Chris Evans
Jonathan Evans
Alvin Orbaek White
Peter Dunstan
Richard Cobley
Andrew Barron
title_short Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
title_full Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
title_fullStr Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
title_full_unstemmed Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
title_sort Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity
author_id_str_mv 3cc4b7c0dcf59d3ff31f9f13b0e5a831
0c278a5f9b1cc3b79781ecb37300e86e
2ac26abca80f9a12578e6711eb35df5b
3a4152e0539a5ba25b3bbb9f76033cf7
8414a23650d4403fdfe1a735dbd2e24e
eada15d4d33fcb3dfddcff43f1323bd6
2ce7e1dd9006164425415a35fa452494
92e452f20936d688d36f91c78574241d
author_id_fullname_str_mv 3cc4b7c0dcf59d3ff31f9f13b0e5a831_***_Christopher Barnett
0c278a5f9b1cc3b79781ecb37300e86e_***_James McCormack
2ac26abca80f9a12578e6711eb35df5b_***_Chris Evans
3a4152e0539a5ba25b3bbb9f76033cf7_***_Jonathan Evans
8414a23650d4403fdfe1a735dbd2e24e_***_Alvin Orbaek White
eada15d4d33fcb3dfddcff43f1323bd6_***_Peter Dunstan
2ce7e1dd9006164425415a35fa452494_***_Richard Cobley
92e452f20936d688d36f91c78574241d_***_Andrew Barron
author Christopher Barnett
James McCormack
Chris Evans
Jonathan Evans
Alvin Orbaek White
Peter Dunstan
Richard Cobley
Andrew Barron
author2 Christopher Barnett
James McCormack
Eva M. Deemer
Chris Evans
Jonathan Evans
Alvin Orbaek White
Peter Dunstan
Russell R. Chianelli
Richard Cobley
Andrew Barron
format Journal article
container_title The Journal of Physical Chemistry C
container_volume 124
container_issue 34
container_start_page 18777
publishDate 2020
institution Swansea University
issn 1932-7447
1932-7455
doi_str_mv 10.1021/acs.jpcc.0c05000
publisher American Chemical Society (ACS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Herein, we present an experimental/computational approach for probing the interaction between metal contacts and carbon nanotubes (CNTs) with regard to creating the most efficient, low resistance junction. Tungsten probes have been coated with copper or chromium and the efficiency of nanocontact transport into multiwalled carbon nanotubes (MWCNTs) has been investigated experimentally, using scanning tunneling spectroscopy and nanoscale two-point probe I-V measurements, and in silico, employing DFT calculations. Experimental I-V measurements suggest the relative conductivity of the metal-CNT interaction to be Cu > W > Cr. It has been found that copper when in contact with MWCNTs results in a high density of states at the Fermi level, which contributes states to the conduction band. It was observed that the density of states also increased when chromium and tungsten probes were in contact with CNTs; however, in these cases the density of states increase would only occur under high voltage/high temperature situations. This is demonstrated by an increase in the experimental electrical resistance when compared to the copper probe. These results suggest that in future copper tips should be used when carrying out all intrinsic conduction measurements on CNTs, and they also provide a rationale for the ultraconductivity of Cu-CNT and Cu-graphene composites.
published_date 2020-08-27T04:08:55Z
_version_ 1763753627935047680
score 11.017797