No Cover Image

Journal article 21864 views 170 downloads

Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis

Ane Ruiz-de-Angulo, Marc Bilbao Asensio, James Cronin Orcid Logo, Stephen Evans Orcid Logo, Martin Clift Orcid Logo, Jordi Llop, Irene V.J. Feiner, Rhiannon Beadman, Kepa Zamacola Bascarán, Juan Mareque-Rivas Orcid Logo

iScience, Volume: 23, Issue: 9, Start page: 101499

Swansea University Authors: Marc Bilbao Asensio, James Cronin Orcid Logo, Stephen Evans Orcid Logo, Martin Clift Orcid Logo, Rhiannon Beadman, Juan Mareque-Rivas Orcid Logo

  • 55075.pdf

    PDF | Version of Record

    © 2020 The Authors. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND 4.0)

    Download (7.72MB)

Abstract

Immunotherapy has yielded impressive results, but only for a minority of patients with cancer. Therefore, new approaches that potentiate immunotherapy are a pressing medical need. Ferroptosis is a newly described type of programmed cell death driven by iron-dependent phospholipid peroxidation via Fe...

Full description

Published in: iScience
ISSN: 2589-0042
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55075
Abstract: Immunotherapy has yielded impressive results, but only for a minority of patients with cancer. Therefore, new approaches that potentiate immunotherapy are a pressing medical need. Ferroptosis is a newly described type of programmed cell death driven by iron-dependent phospholipid peroxidation via Fenton chemistry. Here, we developed iron oxide-loaded nanovaccines (IONVs), which, chemically programmed to integrate iron catalysis, drug delivery, and tracking exploiting the characteristics of the tumor microenvironment (TME), improves immunotherapy and activation of ferroptosis. The IONVs trigger danger signals and use molecular disassembly and reversible covalent bonds for targeted antigen delivery and improved immunostimulatory capacity and catalytic iron for targeting tumor cell ferroptosis. IONV- and antibody-mediated TME modulation interfaced with imaging was important toward achieving complete eradication of aggressive and established tumors, eliciting long-lived protective antitumor immunity with no toxicities. This work establishes the feasibility of using nanoparticle iron catalytic activity as a versatile and effective feature for enhancing immunotherapy.
Keywords: Immunology, Biomaterials, Nanomaterials, Cancer Therapy
College: Faculty of Science and Engineering
Funders: College of Science August 2020 (APC), EPSRC, Spanish Ministry of Economy and Competitiveness (MINECO)
Issue: 9
Start Page: 101499