Journal article 740 views 123 downloads
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells
Energies, Volume: 13, Issue: 18, Start page: 4637
Swansea University Authors: Peter Holliman , Arthur Connell, Chris Kershaw, Diana Meza Rojas, Eurig Jones
-
PDF | Version of Record
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License
Download (2.93MB)
DOI (Published version): 10.3390/en13184637
Abstract
Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid...
Published in: | Energies |
---|---|
ISSN: | 1996-1073 |
Published: |
MDPI AG
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55254 |
first_indexed |
2020-09-24T09:44:16Z |
---|---|
last_indexed |
2021-12-02T04:11:15Z |
id |
cronfa55254 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-12-01T13:58:06.4154269</datestamp><bib-version>v2</bib-version><id>55254</id><entry>2020-09-24</entry><title>Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells</title><swanseaauthors><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>03967ce19a2f81a255587c196f6ede3f</sid><firstname>Arthur</firstname><surname>Connell</surname><name>Arthur Connell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>712418e62ef36662d4034e102107a1c8</sid><firstname>Chris</firstname><surname>Kershaw</surname><name>Chris Kershaw</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>92aa16279e84326a8b8a808af38a7fdc</sid><firstname>Diana</firstname><surname>Meza Rojas</surname><name>Diana Meza Rojas</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c6d92fb58a378914f3fdff316a9b4b29</sid><firstname>Eurig</firstname><surname>Jones</surname><name>Eurig Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-09-24</date><deptcode>EAAS</deptcode><abstract>Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid (10) or two cyanoacrylic acids (2Z, 2′Z)-3, 3′-(5-((E)-4-(diphenylamino) styryl)-1, 3-phenylene) bis (2-cyanoacrylic acid) (8) as linker groups. Full characterization data are reported for these dyes and their synthetic intermediates. DSC devices have been prepared from these new dyes either by passive or fast dyeing and the dyes have also been tested in co-sensitized DSC devices leading to a PCE (η = 5.4%) for the double cyanoacrylate linker dye (8) co-sensitized with D149. The dye:TiO2 surface interactions and dye excitations are interpreted using three modelling methods: density functional theory (at 0 K); molecular dynamics (at 298 K); time dependent density functional theory. The modelling results show the preferred orientation of both dyes on an anatase (1 0 1) TiO2 surface to be horizontal, and both the simulated and experimental absorption spectra of the dye molecules indicate a red shifted band for (8) compared to (10). This is in line with broader light harvesting and Jsc for (8) compared to (10).</abstract><type>Journal Article</type><journal>Energies</journal><volume>13</volume><journalNumber>18</journalNumber><paginationStart>4637</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1996-1073</issnElectronic><keywords>light harvesting; co-sensitization; surface engineering; synthesis; solar energy; atomistic modelling; DFT; MD; TDDFT</keywords><publishedDay>7</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-09-07</publishedDate><doi>10.3390/en13184637</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-12-01T13:58:06.4154269</lastEdited><Created>2020-09-24T10:41:58.9596567</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>1</order></author><author><firstname>Moneer</firstname><surname>Mohsen</surname><order>2</order></author><author><firstname>Arthur</firstname><surname>Connell</surname><order>3</order></author><author><firstname>Chris</firstname><surname>Kershaw</surname><order>4</order></author><author><firstname>Diana</firstname><surname>Meza Rojas</surname><order>5</order></author><author><firstname>Eurig</firstname><surname>Jones</surname><order>6</order></author><author><firstname>Dawn</firstname><surname>Geatches</surname><order>7</order></author><author><firstname>Kakali</firstname><surname>Sen</surname><order>8</order></author><author><firstname>Ya-Wen</firstname><surname>Hsiao</surname><order>9</order></author></authors><documents><document><filename>55254__18242__d61227d4c2f941ea948edcce331ab333.pdf</filename><originalFilename>55254.pdf</originalFilename><uploaded>2020-09-24T10:43:46.3075707</uploaded><type>Output</type><contentLength>3069437</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-12-01T13:58:06.4154269 v2 55254 2020-09-24 Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false 03967ce19a2f81a255587c196f6ede3f Arthur Connell Arthur Connell true false 712418e62ef36662d4034e102107a1c8 Chris Kershaw Chris Kershaw true false 92aa16279e84326a8b8a808af38a7fdc Diana Meza Rojas Diana Meza Rojas true false c6d92fb58a378914f3fdff316a9b4b29 Eurig Jones Eurig Jones true false 2020-09-24 EAAS Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid (10) or two cyanoacrylic acids (2Z, 2′Z)-3, 3′-(5-((E)-4-(diphenylamino) styryl)-1, 3-phenylene) bis (2-cyanoacrylic acid) (8) as linker groups. Full characterization data are reported for these dyes and their synthetic intermediates. DSC devices have been prepared from these new dyes either by passive or fast dyeing and the dyes have also been tested in co-sensitized DSC devices leading to a PCE (η = 5.4%) for the double cyanoacrylate linker dye (8) co-sensitized with D149. The dye:TiO2 surface interactions and dye excitations are interpreted using three modelling methods: density functional theory (at 0 K); molecular dynamics (at 298 K); time dependent density functional theory. The modelling results show the preferred orientation of both dyes on an anatase (1 0 1) TiO2 surface to be horizontal, and both the simulated and experimental absorption spectra of the dye molecules indicate a red shifted band for (8) compared to (10). This is in line with broader light harvesting and Jsc for (8) compared to (10). Journal Article Energies 13 18 4637 MDPI AG 1996-1073 light harvesting; co-sensitization; surface engineering; synthesis; solar energy; atomistic modelling; DFT; MD; TDDFT 7 9 2020 2020-09-07 10.3390/en13184637 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-12-01T13:58:06.4154269 2020-09-24T10:41:58.9596567 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Peter Holliman 0000-0002-9911-8513 1 Moneer Mohsen 2 Arthur Connell 3 Chris Kershaw 4 Diana Meza Rojas 5 Eurig Jones 6 Dawn Geatches 7 Kakali Sen 8 Ya-Wen Hsiao 9 55254__18242__d61227d4c2f941ea948edcce331ab333.pdf 55254.pdf 2020-09-24T10:43:46.3075707 Output 3069437 application/pdf Version of Record true © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License true eng http://creativecommons.org/licenses/by/4.0 |
title |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells |
spellingShingle |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells Peter Holliman Arthur Connell Chris Kershaw Diana Meza Rojas Eurig Jones |
title_short |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells |
title_full |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells |
title_fullStr |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells |
title_full_unstemmed |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells |
title_sort |
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells |
author_id_str_mv |
c8f52394d776279c9c690dc26066ddf9 03967ce19a2f81a255587c196f6ede3f 712418e62ef36662d4034e102107a1c8 92aa16279e84326a8b8a808af38a7fdc c6d92fb58a378914f3fdff316a9b4b29 |
author_id_fullname_str_mv |
c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman 03967ce19a2f81a255587c196f6ede3f_***_Arthur Connell 712418e62ef36662d4034e102107a1c8_***_Chris Kershaw 92aa16279e84326a8b8a808af38a7fdc_***_Diana Meza Rojas c6d92fb58a378914f3fdff316a9b4b29_***_Eurig Jones |
author |
Peter Holliman Arthur Connell Chris Kershaw Diana Meza Rojas Eurig Jones |
author2 |
Peter Holliman Moneer Mohsen Arthur Connell Chris Kershaw Diana Meza Rojas Eurig Jones Dawn Geatches Kakali Sen Ya-Wen Hsiao |
format |
Journal article |
container_title |
Energies |
container_volume |
13 |
container_issue |
18 |
container_start_page |
4637 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1996-1073 |
doi_str_mv |
10.3390/en13184637 |
publisher |
MDPI AG |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid (10) or two cyanoacrylic acids (2Z, 2′Z)-3, 3′-(5-((E)-4-(diphenylamino) styryl)-1, 3-phenylene) bis (2-cyanoacrylic acid) (8) as linker groups. Full characterization data are reported for these dyes and their synthetic intermediates. DSC devices have been prepared from these new dyes either by passive or fast dyeing and the dyes have also been tested in co-sensitized DSC devices leading to a PCE (η = 5.4%) for the double cyanoacrylate linker dye (8) co-sensitized with D149. The dye:TiO2 surface interactions and dye excitations are interpreted using three modelling methods: density functional theory (at 0 K); molecular dynamics (at 298 K); time dependent density functional theory. The modelling results show the preferred orientation of both dyes on an anatase (1 0 1) TiO2 surface to be horizontal, and both the simulated and experimental absorption spectra of the dye molecules indicate a red shifted band for (8) compared to (10). This is in line with broader light harvesting and Jsc for (8) compared to (10). |
published_date |
2020-09-07T07:53:42Z |
_version_ |
1821300618220797952 |
score |
11.047306 |