Conference Paper/Proceeding/Abstract 907 views 310 downloads
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling
2020 IEEE International Conference on Image Processing (ICIP), Pages: 2815 - 2819
Swansea University Authors: Omniah Nagoor, Jingjing Deng, Benjamin Mora , Mark Jones
-
PDF | Accepted Manuscript
Download (202.02KB)
DOI (Published version): 10.1109/icip40778.2020.9191031
Abstract
Data compression forms a central role in handling the bottleneck of data storage, transmission and processing. Lossless compression requires reducing the file size whilst maintaining bit-perfect decompression, which is the main target in medical applications. This paper presents a novel lossless com...
Published in: | 2020 IEEE International Conference on Image Processing (ICIP) |
---|---|
ISBN: | 978-1-7281-6396-3 9781728163956 |
ISSN: | 1522-4880 2381-8549 |
Published: |
IEEE
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55355 |
first_indexed |
2020-10-06T15:29:12Z |
---|---|
last_indexed |
2020-12-03T04:10:26Z |
id |
cronfa55355 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-02T15:13:27.2753404</datestamp><bib-version>v2</bib-version><id>55355</id><entry>2020-10-06</entry><title>Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling</title><swanseaauthors><author><sid>ad8a0ed9b747350e0d626fe4398a9fe0</sid><firstname>Omniah</firstname><surname>Nagoor</surname><name>Omniah Nagoor</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>557f93dfae240600e5bd4398bf203821</sid><ORCID>0000-0002-2945-3519</ORCID><firstname>Benjamin</firstname><surname>Mora</surname><name>Benjamin Mora</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2e1030b6e14fc9debd5d5ae7cc335562</sid><ORCID>0000-0001-8991-1190</ORCID><firstname>Mark</firstname><surname>Jones</surname><name>Mark Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-10-06</date><deptcode>MACS</deptcode><abstract>Data compression forms a central role in handling the bottleneck of data storage, transmission and processing. Lossless compression requires reducing the file size whilst maintaining bit-perfect decompression, which is the main target in medical applications. This paper presents a novel lossless compression method for 16-bit medical imaging volumes. The aim is to train a neural network (NN) as a 3D data predictor, which minimizes the differences with the original data values and to compress those residuals using arithmetic coding. We evaluate the compression performance of our proposed models to state-of-the-art lossless compression methods, which shows that our approach accomplishes a higher compression ratio in comparison to JPEG-LS, JPEG2000, JP3D, and HEVC and generalizes well.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>2020 IEEE International Conference on Image Processing (ICIP)</journal><volume/><journalNumber/><paginationStart>2815</paginationStart><paginationEnd>2819</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>978-1-7281-6396-3</isbnPrint><isbnElectronic>9781728163956</isbnElectronic><issnPrint>1522-4880</issnPrint><issnElectronic>2381-8549</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-10-01</publishedDate><doi>10.1109/icip40778.2020.9191031</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-02T15:13:27.2753404</lastEdited><Created>2020-10-06T16:23:30.1094053</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Omniah</firstname><surname>Nagoor</surname><order>1</order></author><author><firstname>J.</firstname><surname>Whittle</surname><order>2</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>3</order></author><author><firstname>Benjamin</firstname><surname>Mora</surname><orcid>0000-0002-2945-3519</orcid><order>4</order></author><author><firstname>Mark</firstname><surname>Jones</surname><orcid>0000-0001-8991-1190</orcid><order>5</order></author></authors><documents><document><filename>55355__18349__c897033bda6149a89835ac643f9f4d26.pdf</filename><originalFilename>2020_ICIP.pdf</originalFilename><uploaded>2020-10-06T16:31:51.1740491</uploaded><type>Output</type><contentLength>206870</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-12-02T15:13:27.2753404 v2 55355 2020-10-06 Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling ad8a0ed9b747350e0d626fe4398a9fe0 Omniah Nagoor Omniah Nagoor true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false 557f93dfae240600e5bd4398bf203821 0000-0002-2945-3519 Benjamin Mora Benjamin Mora true false 2e1030b6e14fc9debd5d5ae7cc335562 0000-0001-8991-1190 Mark Jones Mark Jones true false 2020-10-06 MACS Data compression forms a central role in handling the bottleneck of data storage, transmission and processing. Lossless compression requires reducing the file size whilst maintaining bit-perfect decompression, which is the main target in medical applications. This paper presents a novel lossless compression method for 16-bit medical imaging volumes. The aim is to train a neural network (NN) as a 3D data predictor, which minimizes the differences with the original data values and to compress those residuals using arithmetic coding. We evaluate the compression performance of our proposed models to state-of-the-art lossless compression methods, which shows that our approach accomplishes a higher compression ratio in comparison to JPEG-LS, JPEG2000, JP3D, and HEVC and generalizes well. Conference Paper/Proceeding/Abstract 2020 IEEE International Conference on Image Processing (ICIP) 2815 2819 IEEE 978-1-7281-6396-3 9781728163956 1522-4880 2381-8549 1 10 2020 2020-10-01 10.1109/icip40778.2020.9191031 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-12-02T15:13:27.2753404 2020-10-06T16:23:30.1094053 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Omniah Nagoor 1 J. Whittle 2 Jingjing Deng 3 Benjamin Mora 0000-0002-2945-3519 4 Mark Jones 0000-0001-8991-1190 5 55355__18349__c897033bda6149a89835ac643f9f4d26.pdf 2020_ICIP.pdf 2020-10-06T16:31:51.1740491 Output 206870 application/pdf Accepted Manuscript true true eng |
title |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling |
spellingShingle |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling Omniah Nagoor Jingjing Deng Benjamin Mora Mark Jones |
title_short |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling |
title_full |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling |
title_fullStr |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling |
title_full_unstemmed |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling |
title_sort |
Lossless Compression For Volumetric Medical Images Using Deep Neural Network With Local Sampling |
author_id_str_mv |
ad8a0ed9b747350e0d626fe4398a9fe0 6f6d01d585363d6dc1622640bb4fcb3f 557f93dfae240600e5bd4398bf203821 2e1030b6e14fc9debd5d5ae7cc335562 |
author_id_fullname_str_mv |
ad8a0ed9b747350e0d626fe4398a9fe0_***_Omniah Nagoor 6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng 557f93dfae240600e5bd4398bf203821_***_Benjamin Mora 2e1030b6e14fc9debd5d5ae7cc335562_***_Mark Jones |
author |
Omniah Nagoor Jingjing Deng Benjamin Mora Mark Jones |
author2 |
Omniah Nagoor J. Whittle Jingjing Deng Benjamin Mora Mark Jones |
format |
Conference Paper/Proceeding/Abstract |
container_title |
2020 IEEE International Conference on Image Processing (ICIP) |
container_start_page |
2815 |
publishDate |
2020 |
institution |
Swansea University |
isbn |
978-1-7281-6396-3 9781728163956 |
issn |
1522-4880 2381-8549 |
doi_str_mv |
10.1109/icip40778.2020.9191031 |
publisher |
IEEE |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
Data compression forms a central role in handling the bottleneck of data storage, transmission and processing. Lossless compression requires reducing the file size whilst maintaining bit-perfect decompression, which is the main target in medical applications. This paper presents a novel lossless compression method for 16-bit medical imaging volumes. The aim is to train a neural network (NN) as a 3D data predictor, which minimizes the differences with the original data values and to compress those residuals using arithmetic coding. We evaluate the compression performance of our proposed models to state-of-the-art lossless compression methods, which shows that our approach accomplishes a higher compression ratio in comparison to JPEG-LS, JPEG2000, JP3D, and HEVC and generalizes well. |
published_date |
2020-10-01T07:53:56Z |
_version_ |
1821300633705119744 |
score |
11.047306 |