Conference Paper/Proceeding/Abstract 968 views 320 downloads
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM)
2020 25th International Conference on Pattern Recognition (ICPR)
Swansea University Authors: Omniah Nagoor, Jingjing Deng, Benjamin Mora , Mark Jones , Joss O. Whittle
-
PDF | Accepted Manuscript
Copyright information Available here; https://conferences.ieeeauthorcenter.ieee.org/get-published/post-your-paper/
Download (178.42KB)
DOI (Published version): 10.1109/icpr48806.2021.9413341
Abstract
As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desir...
Published in: | 2020 25th International Conference on Pattern Recognition (ICPR) |
---|---|
ISBN: | 9781728188089 |
Published: |
IEEE
2021
|
Online Access: |
http://dx.doi.org/10.1109/icpr48806.2021.9413341 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa55395 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-10-12T09:22:48Z |
---|---|
last_indexed |
2021-09-25T03:17:22Z |
id |
cronfa55395 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-09-24T10:46:58.4864569</datestamp><bib-version>v2</bib-version><id>55395</id><entry>2020-10-11</entry><title>MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM)</title><swanseaauthors><author><sid>ad8a0ed9b747350e0d626fe4398a9fe0</sid><firstname>Omniah</firstname><surname>Nagoor</surname><name>Omniah Nagoor</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>557f93dfae240600e5bd4398bf203821</sid><ORCID>0000-0002-2945-3519</ORCID><firstname>Benjamin</firstname><surname>Mora</surname><name>Benjamin Mora</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2e1030b6e14fc9debd5d5ae7cc335562</sid><ORCID>0000-0001-8991-1190</ORCID><firstname>Mark</firstname><surname>Jones</surname><name>Mark Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2ffb82878e554c1b90ebc37971872fa7</sid><ORCID>NULL</ORCID><firstname>Joss O.</firstname><surname>Whittle</surname><name>Joss O. Whittle</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2020-10-11</date><deptcode>SCS</deptcode><abstract>As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desired to reduce scan bitrate while guaranteeing lossless reconstruction. This paper presents a lossless compression method that integrates a Recurrent Neural Network (RNN) as a 3D sequence prediction model. The aim is to learn the long dependencies of the voxel's neighbourhood in 3D using Long Short-Term Memory (LSTM) network then compress the residual error using arithmetic coding. Experiential results reveal that our method obtains a higher compression ratio achieving 15% saving compared to the state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation demonstrates that the proposed method generalizes well to unseen modalities CT and MRI for the lossless compression scheme. To the best of our knowledge, this is the first lossless compression method that uses LSTM neural network for 16-bit volumetric medical image compression.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>2020 25th International Conference on Pattern Recognition (ICPR)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>IEEE</publisher><placeOfPublication/><isbnPrint/><isbnElectronic>9781728188089</isbnElectronic><issnPrint/><issnElectronic/><keywords/><publishedDay>10</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-10</publishedDate><doi>10.1109/icpr48806.2021.9413341</doi><url>http://dx.doi.org/10.1109/icpr48806.2021.9413341</url><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-24T10:46:58.4864569</lastEdited><Created>2020-10-11T09:49:46.1295788</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Omniah</firstname><surname>Nagoor</surname><order>1</order></author><author><firstname>J.</firstname><surname>Whittle</surname><order>2</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>3</order></author><author><firstname>Benjamin</firstname><surname>Mora</surname><orcid>0000-0002-2945-3519</orcid><order>4</order></author><author><firstname>Mark</firstname><surname>Jones</surname><orcid>0000-0001-8991-1190</orcid><order>5</order></author><author><firstname>Joss O.</firstname><surname>Whittle</surname><orcid>NULL</orcid><order>6</order></author></authors><documents><document><filename>55395__18418__e5422e1a83334b39b601c095faf8c110.pdf</filename><originalFilename>2020_MedZip_ICPR.pdf</originalFilename><uploaded>2020-10-14T09:34:45.0888534</uploaded><type>Output</type><contentLength>182707</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright information Available here; https://conferences.ieeeauthorcenter.ieee.org/get-published/post-your-paper/</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-09-24T10:46:58.4864569 v2 55395 2020-10-11 MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) ad8a0ed9b747350e0d626fe4398a9fe0 Omniah Nagoor Omniah Nagoor true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false 557f93dfae240600e5bd4398bf203821 0000-0002-2945-3519 Benjamin Mora Benjamin Mora true false 2e1030b6e14fc9debd5d5ae7cc335562 0000-0001-8991-1190 Mark Jones Mark Jones true false 2ffb82878e554c1b90ebc37971872fa7 NULL Joss O. Whittle Joss O. Whittle true true 2020-10-11 SCS As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desired to reduce scan bitrate while guaranteeing lossless reconstruction. This paper presents a lossless compression method that integrates a Recurrent Neural Network (RNN) as a 3D sequence prediction model. The aim is to learn the long dependencies of the voxel's neighbourhood in 3D using Long Short-Term Memory (LSTM) network then compress the residual error using arithmetic coding. Experiential results reveal that our method obtains a higher compression ratio achieving 15% saving compared to the state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation demonstrates that the proposed method generalizes well to unseen modalities CT and MRI for the lossless compression scheme. To the best of our knowledge, this is the first lossless compression method that uses LSTM neural network for 16-bit volumetric medical image compression. Conference Paper/Proceeding/Abstract 2020 25th International Conference on Pattern Recognition (ICPR) IEEE 9781728188089 10 1 2021 2021-01-10 10.1109/icpr48806.2021.9413341 http://dx.doi.org/10.1109/icpr48806.2021.9413341 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2021-09-24T10:46:58.4864569 2020-10-11T09:49:46.1295788 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Omniah Nagoor 1 J. Whittle 2 Jingjing Deng 3 Benjamin Mora 0000-0002-2945-3519 4 Mark Jones 0000-0001-8991-1190 5 Joss O. Whittle NULL 6 55395__18418__e5422e1a83334b39b601c095faf8c110.pdf 2020_MedZip_ICPR.pdf 2020-10-14T09:34:45.0888534 Output 182707 application/pdf Accepted Manuscript true Copyright information Available here; https://conferences.ieeeauthorcenter.ieee.org/get-published/post-your-paper/ true eng |
title |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) |
spellingShingle |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) Omniah Nagoor Jingjing Deng Benjamin Mora Mark Jones Joss O. Whittle |
title_short |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) |
title_full |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) |
title_fullStr |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) |
title_full_unstemmed |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) |
title_sort |
MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM) |
author_id_str_mv |
ad8a0ed9b747350e0d626fe4398a9fe0 6f6d01d585363d6dc1622640bb4fcb3f 557f93dfae240600e5bd4398bf203821 2e1030b6e14fc9debd5d5ae7cc335562 2ffb82878e554c1b90ebc37971872fa7 |
author_id_fullname_str_mv |
ad8a0ed9b747350e0d626fe4398a9fe0_***_Omniah Nagoor 6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng 557f93dfae240600e5bd4398bf203821_***_Benjamin Mora 2e1030b6e14fc9debd5d5ae7cc335562_***_Mark Jones 2ffb82878e554c1b90ebc37971872fa7_***_Joss O. Whittle |
author |
Omniah Nagoor Jingjing Deng Benjamin Mora Mark Jones Joss O. Whittle |
author2 |
Omniah Nagoor J. Whittle Jingjing Deng Benjamin Mora Mark Jones Joss O. Whittle |
format |
Conference Paper/Proceeding/Abstract |
container_title |
2020 25th International Conference on Pattern Recognition (ICPR) |
publishDate |
2021 |
institution |
Swansea University |
isbn |
9781728188089 |
doi_str_mv |
10.1109/icpr48806.2021.9413341 |
publisher |
IEEE |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://dx.doi.org/10.1109/icpr48806.2021.9413341 |
document_store_str |
1 |
active_str |
0 |
description |
As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desired to reduce scan bitrate while guaranteeing lossless reconstruction. This paper presents a lossless compression method that integrates a Recurrent Neural Network (RNN) as a 3D sequence prediction model. The aim is to learn the long dependencies of the voxel's neighbourhood in 3D using Long Short-Term Memory (LSTM) network then compress the residual error using arithmetic coding. Experiential results reveal that our method obtains a higher compression ratio achieving 15% saving compared to the state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation demonstrates that the proposed method generalizes well to unseen modalities CT and MRI for the lossless compression scheme. To the best of our knowledge, this is the first lossless compression method that uses LSTM neural network for 16-bit volumetric medical image compression. |
published_date |
2021-01-10T04:09:34Z |
_version_ |
1763753668771840000 |
score |
11.035634 |