Journal article 977 views 175 downloads
Passive energy balancing design for a linear actuated morphing wingtip structure
Aerospace Science and Technology, Volume: 107, Start page: 106279
Swansea University Authors: Jiaying Zhang , Alexander Shaw , Michael Friswell
-
PDF | Accepted Manuscript
©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (4.57MB)
DOI (Published version): 10.1016/j.ast.2020.106279
Abstract
A passive energy balancing concept for linear actuation is investigated in the current work by adopting a negative stiffness mechanism. The proposed negative stiffness mechanism uses a pre-tensioned spring to produce a passive torque and therefore to transfer the passive torque through a crankshaft...
Published in: | Aerospace Science and Technology |
---|---|
ISSN: | 1270-9638 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55484 |
first_indexed |
2020-10-22T13:10:24Z |
---|---|
last_indexed |
2020-12-11T04:19:46Z |
id |
cronfa55484 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-10T14:17:42.2336015</datestamp><bib-version>v2</bib-version><id>55484</id><entry>2020-10-22</entry><title>Passive energy balancing design for a linear actuated morphing wingtip structure</title><swanseaauthors><author><sid>12b61893c794b14f11cf0a84cb947d0e</sid><ORCID>0000-0001-7308-5090</ORCID><firstname>Jiaying</firstname><surname>Zhang</surname><name>Jiaying Zhang</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>10cb5f545bc146fba9a542a1d85f2dea</sid><ORCID>0000-0002-7521-827X</ORCID><firstname>Alexander</firstname><surname>Shaw</surname><name>Alexander Shaw</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5894777b8f9c6e64bde3568d68078d40</sid><firstname>Michael</firstname><surname>Friswell</surname><name>Michael Friswell</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-10-22</date><abstract>A passive energy balancing concept for linear actuation is investigated in the current work by adopting a negative stiffness mechanism. The proposed negative stiffness mechanism uses a pre-tensioned spring to produce a passive torque and therefore to transfer the passive torque through a crankshaft for linear motion.The proposed passive energy balancing design is supposed to be applied in a morphing wingtip, of which the shape change comes from the elastic deformation of the morphing structure. A significant amount of linear actuation force can be required to deform the structure, and therefore it is important to reduce the required force and the consumed energy by adopting the passive energy balancing design.The kinematics of the negative stiffness mechanism is developed to satisfy the required linear motion and its geometry is then optimised to reduce the energy requirements. The performance of the optimised negative stiffness mechanism is evaluated through the net force and the total required energy, which shows the potential of the design in the morphing wingtip application.</abstract><type>Journal Article</type><journal>Aerospace Science and Technology</journal><volume>107</volume><journalNumber/><paginationStart>106279</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1270-9638</issnPrint><issnElectronic/><keywords>Negative stiffness mechanism, Kinematics tailoring, Energy balancing, Actuator efficiency, Morphing wingtip, Morphing aircraft</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1016/j.ast.2020.106279</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-10T14:17:42.2336015</lastEdited><Created>2020-10-22T14:05:27.4019195</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Jiaying</firstname><surname>Zhang</surname><orcid>0000-0001-7308-5090</orcid><order>1</order></author><author><firstname>Chen</firstname><surname>Wang</surname><order>2</order></author><author><firstname>Alexander</firstname><surname>Shaw</surname><orcid>0000-0002-7521-827X</orcid><order>3</order></author><author><firstname>Mohammadreza</firstname><surname>Amoozgar</surname><order>4</order></author><author><firstname>Michael</firstname><surname>Friswell</surname><order>5</order></author></authors><documents><document><filename>55484__18482__ce12419b718c45d2977f804ff4190df2.pdf</filename><originalFilename>55484.pdf</originalFilename><uploaded>2020-10-23T09:17:45.5201031</uploaded><type>Output</type><contentLength>4791682</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-10-19T00:00:00.0000000</embargoDate><documentNotes>©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-12-10T14:17:42.2336015 v2 55484 2020-10-22 Passive energy balancing design for a linear actuated morphing wingtip structure 12b61893c794b14f11cf0a84cb947d0e 0000-0001-7308-5090 Jiaying Zhang Jiaying Zhang true false 10cb5f545bc146fba9a542a1d85f2dea 0000-0002-7521-827X Alexander Shaw Alexander Shaw true false 5894777b8f9c6e64bde3568d68078d40 Michael Friswell Michael Friswell true false 2020-10-22 A passive energy balancing concept for linear actuation is investigated in the current work by adopting a negative stiffness mechanism. The proposed negative stiffness mechanism uses a pre-tensioned spring to produce a passive torque and therefore to transfer the passive torque through a crankshaft for linear motion.The proposed passive energy balancing design is supposed to be applied in a morphing wingtip, of which the shape change comes from the elastic deformation of the morphing structure. A significant amount of linear actuation force can be required to deform the structure, and therefore it is important to reduce the required force and the consumed energy by adopting the passive energy balancing design.The kinematics of the negative stiffness mechanism is developed to satisfy the required linear motion and its geometry is then optimised to reduce the energy requirements. The performance of the optimised negative stiffness mechanism is evaluated through the net force and the total required energy, which shows the potential of the design in the morphing wingtip application. Journal Article Aerospace Science and Technology 107 106279 Elsevier BV 1270-9638 Negative stiffness mechanism, Kinematics tailoring, Energy balancing, Actuator efficiency, Morphing wingtip, Morphing aircraft 1 12 2020 2020-12-01 10.1016/j.ast.2020.106279 COLLEGE NANME COLLEGE CODE Swansea University 2020-12-10T14:17:42.2336015 2020-10-22T14:05:27.4019195 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Jiaying Zhang 0000-0001-7308-5090 1 Chen Wang 2 Alexander Shaw 0000-0002-7521-827X 3 Mohammadreza Amoozgar 4 Michael Friswell 5 55484__18482__ce12419b718c45d2977f804ff4190df2.pdf 55484.pdf 2020-10-23T09:17:45.5201031 Output 4791682 application/pdf Accepted Manuscript true 2021-10-19T00:00:00.0000000 ©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Passive energy balancing design for a linear actuated morphing wingtip structure |
spellingShingle |
Passive energy balancing design for a linear actuated morphing wingtip structure Jiaying Zhang Alexander Shaw Michael Friswell |
title_short |
Passive energy balancing design for a linear actuated morphing wingtip structure |
title_full |
Passive energy balancing design for a linear actuated morphing wingtip structure |
title_fullStr |
Passive energy balancing design for a linear actuated morphing wingtip structure |
title_full_unstemmed |
Passive energy balancing design for a linear actuated morphing wingtip structure |
title_sort |
Passive energy balancing design for a linear actuated morphing wingtip structure |
author_id_str_mv |
12b61893c794b14f11cf0a84cb947d0e 10cb5f545bc146fba9a542a1d85f2dea 5894777b8f9c6e64bde3568d68078d40 |
author_id_fullname_str_mv |
12b61893c794b14f11cf0a84cb947d0e_***_Jiaying Zhang 10cb5f545bc146fba9a542a1d85f2dea_***_Alexander Shaw 5894777b8f9c6e64bde3568d68078d40_***_Michael Friswell |
author |
Jiaying Zhang Alexander Shaw Michael Friswell |
author2 |
Jiaying Zhang Chen Wang Alexander Shaw Mohammadreza Amoozgar Michael Friswell |
format |
Journal article |
container_title |
Aerospace Science and Technology |
container_volume |
107 |
container_start_page |
106279 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1270-9638 |
doi_str_mv |
10.1016/j.ast.2020.106279 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
A passive energy balancing concept for linear actuation is investigated in the current work by adopting a negative stiffness mechanism. The proposed negative stiffness mechanism uses a pre-tensioned spring to produce a passive torque and therefore to transfer the passive torque through a crankshaft for linear motion.The proposed passive energy balancing design is supposed to be applied in a morphing wingtip, of which the shape change comes from the elastic deformation of the morphing structure. A significant amount of linear actuation force can be required to deform the structure, and therefore it is important to reduce the required force and the consumed energy by adopting the passive energy balancing design.The kinematics of the negative stiffness mechanism is developed to satisfy the required linear motion and its geometry is then optimised to reduce the energy requirements. The performance of the optimised negative stiffness mechanism is evaluated through the net force and the total required energy, which shows the potential of the design in the morphing wingtip application. |
published_date |
2020-12-01T20:05:57Z |
_version_ |
1821980867160965120 |
score |
11.048042 |