Journal article 424 views
Numerical simulation of the spatiotemporal development of linear disturbances in Stokes layers: Absolute instability and the effects of high-frequency harmonics
Physical Review Fluids, Volume: 5, Issue: 10
Swansea University Authors: Xander Ramage, Michael Togneri
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1103/physrevfluids.5.103901
Abstract
For a family of oscillatory Stokes layers, the spatiotemporal evolution of impulsively excited disturbances is investigated, using direct numerical simulations of the linearized Navier-Stokes equations. The semi-infinite planar Stokes layer is modified to incorporate a low-amplitude, high-frequency...
Published in: | Physical Review Fluids |
---|---|
ISSN: | 2469-990X |
Published: |
American Physical Society (APS)
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55533 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
For a family of oscillatory Stokes layers, the spatiotemporal evolution of impulsively excited disturbances is investigated, using direct numerical simulations of the linearized Navier-Stokes equations. The semi-infinite planar Stokes layer is modified to incorporate a low-amplitude, high-frequency harmonic, which provides a simplified model of the external noise found in physical experiments. For the unmodified Stokes layer, impulsively excited disturbances are known to form family-tree-like structures, composed of multiple wave packets. The long-term behavior that is encompassed within these structures is studied, together with the effects upon them of the alterations to the base flow. In the absence of any base-flow modification, the disturbances are discovered to exhibit a subharmonic pattern of temporal growth, with a periodicity that is twice that of the basic state. It is also shown that when linear instability first arises, it takes an absolute rather than a convective form. Inclusion of a high-frequency harmonic into the basic state is found to have a strong and destabilizing impact upon the impulse response. The development of the family-tree-like disturbance structure can be disrupted, changing the character of the absolute instability and promoting its appearance at much reduced Reynolds numbers. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
10 |