No Cover Image

Conference Paper/Proceeding/Abstract 806 views 381 downloads

Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification

Ehab Essa, Xianghua Xie Orcid Logo

2020 28th European Signal Processing Conference (EUSIPCO)

Swansea University Authors: Ehab Essa, Xianghua Xie Orcid Logo

Published in: 2020 28th European Signal Processing Conference (EUSIPCO)
ISBN: 978-1-7281-5001-7 9789082797053
ISSN: 2219-5491 2076-1465
Published: IEEE 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55575
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-02-05T12:00:42Z
last_indexed 2021-11-11T04:20:57Z
id cronfa55575
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-11-10T09:35:29.2636086</datestamp><bib-version>v2</bib-version><id>55575</id><entry>2020-11-02</entry><title>Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification</title><swanseaauthors><author><sid>ed07364e0dd7b930e116fe9a0ae5d6ee</sid><firstname>Ehab</firstname><surname>Essa</surname><name>Ehab Essa</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-11-02</date><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2020 28th European Signal Processing Conference (EUSIPCO)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>978-1-7281-5001-7</isbnPrint><isbnElectronic>9789082797053</isbnElectronic><issnPrint>2219-5491</issnPrint><issnElectronic>2076-1465</issnElectronic><keywords/><publishedDay>24</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-24</publishedDate><doi>10.23919/eusipco47968.2020.9287520</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-11-10T09:35:29.2636086</lastEdited><Created>2020-11-02T09:40:02.2622702</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>55575__18559__ed4ea687fb654b589641ed7577041b08.pdf</filename><originalFilename>eusipco20.pdf</originalFilename><uploaded>2020-11-02T09:40:44.5133214</uploaded><type>Output</type><contentLength>176288</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-11-10T09:35:29.2636086 v2 55575 2020-11-02 Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification ed07364e0dd7b930e116fe9a0ae5d6ee Ehab Essa Ehab Essa true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2020-11-02 Conference Paper/Proceeding/Abstract 2020 28th European Signal Processing Conference (EUSIPCO) IEEE 978-1-7281-5001-7 9789082797053 2219-5491 2076-1465 24 1 2021 2021-01-24 10.23919/eusipco47968.2020.9287520 COLLEGE NANME COLLEGE CODE Swansea University 2021-11-10T09:35:29.2636086 2020-11-02T09:40:02.2622702 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 55575__18559__ed4ea687fb654b589641ed7577041b08.pdf eusipco20.pdf 2020-11-02T09:40:44.5133214 Output 176288 application/pdf Accepted Manuscript true true eng
title Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
spellingShingle Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
Ehab Essa
Xianghua Xie
title_short Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
title_full Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
title_fullStr Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
title_full_unstemmed Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
title_sort Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
author_id_str_mv ed07364e0dd7b930e116fe9a0ae5d6ee
b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv ed07364e0dd7b930e116fe9a0ae5d6ee_***_Ehab Essa
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Ehab Essa
Xianghua Xie
author2 Ehab Essa
Xianghua Xie
format Conference Paper/Proceeding/Abstract
container_title 2020 28th European Signal Processing Conference (EUSIPCO)
publishDate 2021
institution Swansea University
isbn 978-1-7281-5001-7
9789082797053
issn 2219-5491
2076-1465
doi_str_mv 10.23919/eusipco47968.2020.9287520
publisher IEEE
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
published_date 2021-01-24T04:09:53Z
_version_ 1763753688844730368
score 11.036706