Conference Paper/Proceeding/Abstract 806 views 381 downloads
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
2020 28th European Signal Processing Conference (EUSIPCO)
Swansea University Authors: Ehab Essa, Xianghua Xie
-
PDF | Accepted Manuscript
Download (172.16KB)
DOI (Published version): 10.23919/eusipco47968.2020.9287520
Abstract
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification
Published in: | 2020 28th European Signal Processing Conference (EUSIPCO) |
---|---|
ISBN: | 978-1-7281-5001-7 9789082797053 |
ISSN: | 2219-5491 2076-1465 |
Published: |
IEEE
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55575 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-02-05T12:00:42Z |
---|---|
last_indexed |
2021-11-11T04:20:57Z |
id |
cronfa55575 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-11-10T09:35:29.2636086</datestamp><bib-version>v2</bib-version><id>55575</id><entry>2020-11-02</entry><title>Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification</title><swanseaauthors><author><sid>ed07364e0dd7b930e116fe9a0ae5d6ee</sid><firstname>Ehab</firstname><surname>Essa</surname><name>Ehab Essa</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-11-02</date><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2020 28th European Signal Processing Conference (EUSIPCO)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>978-1-7281-5001-7</isbnPrint><isbnElectronic>9789082797053</isbnElectronic><issnPrint>2219-5491</issnPrint><issnElectronic>2076-1465</issnElectronic><keywords/><publishedDay>24</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-24</publishedDate><doi>10.23919/eusipco47968.2020.9287520</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-11-10T09:35:29.2636086</lastEdited><Created>2020-11-02T09:40:02.2622702</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>55575__18559__ed4ea687fb654b589641ed7577041b08.pdf</filename><originalFilename>eusipco20.pdf</originalFilename><uploaded>2020-11-02T09:40:44.5133214</uploaded><type>Output</type><contentLength>176288</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-11-10T09:35:29.2636086 v2 55575 2020-11-02 Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification ed07364e0dd7b930e116fe9a0ae5d6ee Ehab Essa Ehab Essa true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2020-11-02 Conference Paper/Proceeding/Abstract 2020 28th European Signal Processing Conference (EUSIPCO) IEEE 978-1-7281-5001-7 9789082797053 2219-5491 2076-1465 24 1 2021 2021-01-24 10.23919/eusipco47968.2020.9287520 COLLEGE NANME COLLEGE CODE Swansea University 2021-11-10T09:35:29.2636086 2020-11-02T09:40:02.2622702 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 55575__18559__ed4ea687fb654b589641ed7577041b08.pdf eusipco20.pdf 2020-11-02T09:40:44.5133214 Output 176288 application/pdf Accepted Manuscript true true eng |
title |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification |
spellingShingle |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification Ehab Essa Xianghua Xie |
title_short |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification |
title_full |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification |
title_fullStr |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification |
title_full_unstemmed |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification |
title_sort |
Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification |
author_id_str_mv |
ed07364e0dd7b930e116fe9a0ae5d6ee b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
ed07364e0dd7b930e116fe9a0ae5d6ee_***_Ehab Essa b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Ehab Essa Xianghua Xie |
author2 |
Ehab Essa Xianghua Xie |
format |
Conference Paper/Proceeding/Abstract |
container_title |
2020 28th European Signal Processing Conference (EUSIPCO) |
publishDate |
2021 |
institution |
Swansea University |
isbn |
978-1-7281-5001-7 9789082797053 |
issn |
2219-5491 2076-1465 |
doi_str_mv |
10.23919/eusipco47968.2020.9287520 |
publisher |
IEEE |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2021-01-24T04:09:53Z |
_version_ |
1763753688844730368 |
score |
11.036706 |