No Cover Image

Journal article 280 views 100 downloads

The Flow of Information in Trading: An Entropy Approach to Market Regimes

Anqi Liu, Jing Chen, Steve Y. Yang, Alan Hawkes

Entropy, Volume: 22, Issue: 9, Start page: 1064

Swansea University Author: Alan Hawkes

  • 55813.pdf

    PDF | Version of Record

    ©2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Download (805.76KB)

Check full text

DOI (Published version): 10.3390/e22091064

Published in: Entropy
ISSN: 1099-4300
Published: MDPI AG 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55813
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-12-03T10:03:51Z
last_indexed 2021-01-27T04:19:39Z
id cronfa55813
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-26T16:42:44.6909754</datestamp><bib-version>v2</bib-version><id>55813</id><entry>2020-12-03</entry><title>The Flow of Information in Trading: An Entropy Approach to Market Regimes</title><swanseaauthors><author><sid>56dbf45233f1d80425924e81dc651635</sid><firstname>Alan</firstname><surname>Hawkes</surname><name>Alan Hawkes</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-12-03</date><deptcode>SGMGT</deptcode><abstract/><type>Journal Article</type><journal>Entropy</journal><volume>22</volume><journalNumber>9</journalNumber><paginationStart>1064</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1099-4300</issnElectronic><keywords>information entropy; market information flows; trading behavior identification; news sentiment</keywords><publishedDay>22</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-09-22</publishedDate><doi>10.3390/e22091064</doi><url/><notes/><college>COLLEGE NANME</college><department>School of Management - School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SGMGT</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-26T16:42:44.6909754</lastEdited><Created>2020-12-03T10:01:56.9163451</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Anqi</firstname><surname>Liu</surname><order>1</order></author><author><firstname>Jing</firstname><surname>Chen</surname><order>2</order></author><author><firstname>Steve Y.</firstname><surname>Yang</surname><order>3</order></author><author><firstname>Alan</firstname><surname>Hawkes</surname><order>4</order></author></authors><documents><document><filename>55813__19186__54a6456d0c4e4942a685a7c70ba25a78.pdf</filename><originalFilename>55813.pdf</originalFilename><uploaded>2021-01-26T16:40:51.7573615</uploaded><type>Output</type><contentLength>825096</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9;2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-26T16:42:44.6909754 v2 55813 2020-12-03 The Flow of Information in Trading: An Entropy Approach to Market Regimes 56dbf45233f1d80425924e81dc651635 Alan Hawkes Alan Hawkes true false 2020-12-03 SGMGT Journal Article Entropy 22 9 1064 MDPI AG 1099-4300 information entropy; market information flows; trading behavior identification; news sentiment 22 9 2020 2020-09-22 10.3390/e22091064 COLLEGE NANME School of Management - School COLLEGE CODE SGMGT Swansea University 2021-01-26T16:42:44.6909754 2020-12-03T10:01:56.9163451 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Anqi Liu 1 Jing Chen 2 Steve Y. Yang 3 Alan Hawkes 4 55813__19186__54a6456d0c4e4942a685a7c70ba25a78.pdf 55813.pdf 2021-01-26T16:40:51.7573615 Output 825096 application/pdf Version of Record true ©2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license true eng http://creativecommons.org/licenses/by/4.0/
title The Flow of Information in Trading: An Entropy Approach to Market Regimes
spellingShingle The Flow of Information in Trading: An Entropy Approach to Market Regimes
Alan Hawkes
title_short The Flow of Information in Trading: An Entropy Approach to Market Regimes
title_full The Flow of Information in Trading: An Entropy Approach to Market Regimes
title_fullStr The Flow of Information in Trading: An Entropy Approach to Market Regimes
title_full_unstemmed The Flow of Information in Trading: An Entropy Approach to Market Regimes
title_sort The Flow of Information in Trading: An Entropy Approach to Market Regimes
author_id_str_mv 56dbf45233f1d80425924e81dc651635
author_id_fullname_str_mv 56dbf45233f1d80425924e81dc651635_***_Alan Hawkes
author Alan Hawkes
author2 Anqi Liu
Jing Chen
Steve Y. Yang
Alan Hawkes
format Journal article
container_title Entropy
container_volume 22
container_issue 9
container_start_page 1064
publishDate 2020
institution Swansea University
issn 1099-4300
doi_str_mv 10.3390/e22091064
publisher MDPI AG
college_str Faculty of Humanities and Social Sciences
hierarchytype
hierarchy_top_id facultyofhumanitiesandsocialsciences
hierarchy_top_title Faculty of Humanities and Social Sciences
hierarchy_parent_id facultyofhumanitiesandsocialsciences
hierarchy_parent_title Faculty of Humanities and Social Sciences
department_str School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance
document_store_str 1
active_str 0
published_date 2020-09-22T04:10:18Z
_version_ 1763753714599854080
score 11.036334