Journal article 942 views 370 downloads
A generic energy‐conserving discrete element modeling strategy for concave particles represented by surface triangular meshes
International Journal for Numerical Methods in Engineering, Volume: 122, Issue: 10, Pages: 2581 - 2597
Swansea University Author: Yuntian Feng
-
PDF | Accepted Manuscript
Download (23.98MB)
DOI (Published version): 10.1002/nme.6633
Abstract
A generic energy-conserving linear normal contact model for concave particles in the discrete element method (DEM) is presented in the current paper. It is derived based on a recently enhanced general energy-conserving contact theory for arbitrarily shaped particles. A set of more effective evaluati...
Published in: | International Journal for Numerical Methods in Engineering |
---|---|
ISSN: | 0029-5981 1097-0207 |
Published: |
Wiley
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56022 |
Abstract: |
A generic energy-conserving linear normal contact model for concave particles in the discrete element method (DEM) is presented in the current paper. It is derived based on a recently enhanced general energy-conserving contact theory for arbitrarily shaped particles. A set of more effective evaluation schemes required in the model are also given, which shows that only the intersection boundary between two contact shapes, instead of their contact region or surfaces, is required to be explicitly obtained, thereby substantially improving both efficiency and applicability of the proposed contact model over the previous version. A surface triangular mesh is used to represent any 3D concave particle. The computational issues associated with the contact of two surface triangulated 3D shapes, including the contact detection, the determination of intersection boundary segments, the computation of contact features and parallelisation, critical time step, and friction and damping treatment for multiple contacts are described in detail. Two sets of numerical examples involving various concave 3D shapes with a large number of surface triangles are presented to demonstrate either the superb energy-conserving property of the proposed model model, or its effectiveness, robustness and universal nature for wider and more complex problems. |
---|---|
Keywords: |
Concave shapes, Energy conservation, Linear normal contact model, Triangular mesh representation |
College: |
Faculty of Science and Engineering |
Issue: |
10 |
Start Page: |
2581 |
End Page: |
2597 |