No Cover Image

Journal article 654 views 83 downloads

Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes

Feng-yu Wang

Journal of Functional Analysis, Volume: 280, Issue: 11, Start page: 108998

Swansea University Author: Feng-yu Wang

  • 20a.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (316.33KB)
Published in: Journal of Functional Analysis
ISSN: 0022-1236
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56450
first_indexed 2021-03-23T15:39:24Z
last_indexed 2025-01-16T14:08:31Z
id cronfa56450
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-01-16T10:40:13.5023030</datestamp><bib-version>v2</bib-version><id>56450</id><entry>2021-03-16</entry><title>Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-03-16</date><abstract/><type>Journal Article</type><journal>Journal of Functional Analysis</journal><volume>280</volume><journalNumber>11</journalNumber><paginationStart>108998</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-1236</issnPrint><issnElectronic/><keywords>Conditional empirical measure; Dirichlet diffusion process; Wasserstein distance; Eigenvalues</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-06-01</publishedDate><doi>10.1016/j.jfa.2021.108998</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2025-01-16T10:40:13.5023030</lastEdited><Created>2021-03-16T00:18:10.7210631</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author></authors><documents><document><filename>56450__19488__bcd71e01ec4347a18acd9ca3e7ddc461.pdf</filename><originalFilename>20a.pdf</originalFilename><uploaded>2021-03-16T00:21:10.9951657</uploaded><type>Output</type><contentLength>323921</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-03-16T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-01-16T10:40:13.5023030 v2 56450 2021-03-16 Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2021-03-16 Journal Article Journal of Functional Analysis 280 11 108998 Elsevier BV 0022-1236 Conditional empirical measure; Dirichlet diffusion process; Wasserstein distance; Eigenvalues 1 6 2021 2021-06-01 10.1016/j.jfa.2021.108998 COLLEGE NANME COLLEGE CODE Swansea University Not Required 2025-01-16T10:40:13.5023030 2021-03-16T00:18:10.7210631 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1 56450__19488__bcd71e01ec4347a18acd9ca3e7ddc461.pdf 20a.pdf 2021-03-16T00:21:10.9951657 Output 323921 application/pdf Accepted Manuscript true 2022-03-16T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
spellingShingle Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
Feng-yu Wang
title_short Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
title_full Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
title_fullStr Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
title_full_unstemmed Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
title_sort Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Feng-yu Wang
format Journal article
container_title Journal of Functional Analysis
container_volume 280
container_issue 11
container_start_page 108998
publishDate 2021
institution Swansea University
issn 0022-1236
doi_str_mv 10.1016/j.jfa.2021.108998
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
published_date 2021-06-01T20:09:04Z
_version_ 1821981062546325504
score 11.048042