Journal article 863 views 117 downloads
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions
Journal of Catalysis, Volume: 397, Pages: 58 - 63
Swansea University Author: Richard Palmer
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (1.67MB)
DOI (Published version): 10.1016/j.jcat.2021.03.019
Abstract
Nanostructured palladium catalysts are used industrially for selective alkyne hydrogenation reactions. However, structural changes can lead to a loss of performance. In this study, we show the evolution of the atomic structure of monodispersed Pd nanoclusters undergoing a vapour-phase 1-pentyne hydr...
Published in: | Journal of Catalysis |
---|---|
ISSN: | 0021-9517 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56682 |
first_indexed |
2021-04-19T09:37:21Z |
---|---|
last_indexed |
2021-05-22T03:24:04Z |
id |
cronfa56682 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-05-21T15:02:36.9270195</datestamp><bib-version>v2</bib-version><id>56682</id><entry>2021-04-19</entry><title>From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions</title><swanseaauthors><author><sid>6ae369618efc7424d9774377536ea519</sid><ORCID>0000-0001-8728-8083</ORCID><firstname>Richard</firstname><surname>Palmer</surname><name>Richard Palmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-04-19</date><deptcode>ACEM</deptcode><abstract>Nanostructured palladium catalysts are used industrially for selective alkyne hydrogenation reactions. However, structural changes can lead to a loss of performance. In this study, we show the evolution of the atomic structure of monodispersed Pd nanoclusters undergoing a vapour-phase 1-pentyne hydrogenation reaction. A specific structural transformation, from amorphous to highly symmetrical structures, is observed at the atomic level with aberration-corrected scanning transmission electron microscopy (AC-STEM). This surprising behaviour which occurs concurrently with the alkyne hydrogenation reaction, is clearly size-dependent. The results provide new understanding of the long-term stability of commercial heterogeneous catalysts.</abstract><type>Journal Article</type><journal>Journal of Catalysis</journal><volume>397</volume><journalNumber/><paginationStart>58</paginationStart><paginationEnd>63</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0021-9517</issnPrint><issnElectronic/><keywords>Mass-selected, Palladium nanoclusters, AC-STEM, Alkyne hydrogenation</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-01</publishedDate><doi>10.1016/j.jcat.2021.03.019</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-05-21T15:02:36.9270195</lastEdited><Created>2021-04-19T10:33:54.7490985</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Kuo-Juei</firstname><surname>Hu</surname><order>1</order></author><author><firstname>Peter R.</firstname><surname>Ellis</surname><order>2</order></author><author><firstname>Christopher M.</firstname><surname>Brown</surname><order>3</order></author><author><firstname>Peter T.</firstname><surname>Bishop</surname><order>4</order></author><author><firstname>Richard</firstname><surname>Palmer</surname><orcid>0000-0001-8728-8083</orcid><order>5</order></author></authors><documents><document><filename>56682__19960__21a1176b893548dc85241deaee3c6dde.pdf</filename><originalFilename>56682 (1).pdf</originalFilename><uploaded>2021-05-21T14:49:08.1129779</uploaded><type>Output</type><contentLength>1751069</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-03-29T00:00:00.0000000</embargoDate><documentNotes>©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-05-21T15:02:36.9270195 v2 56682 2021-04-19 From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions 6ae369618efc7424d9774377536ea519 0000-0001-8728-8083 Richard Palmer Richard Palmer true false 2021-04-19 ACEM Nanostructured palladium catalysts are used industrially for selective alkyne hydrogenation reactions. However, structural changes can lead to a loss of performance. In this study, we show the evolution of the atomic structure of monodispersed Pd nanoclusters undergoing a vapour-phase 1-pentyne hydrogenation reaction. A specific structural transformation, from amorphous to highly symmetrical structures, is observed at the atomic level with aberration-corrected scanning transmission electron microscopy (AC-STEM). This surprising behaviour which occurs concurrently with the alkyne hydrogenation reaction, is clearly size-dependent. The results provide new understanding of the long-term stability of commercial heterogeneous catalysts. Journal Article Journal of Catalysis 397 58 63 Elsevier BV 0021-9517 Mass-selected, Palladium nanoclusters, AC-STEM, Alkyne hydrogenation 1 5 2021 2021-05-01 10.1016/j.jcat.2021.03.019 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2021-05-21T15:02:36.9270195 2021-04-19T10:33:54.7490985 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Kuo-Juei Hu 1 Peter R. Ellis 2 Christopher M. Brown 3 Peter T. Bishop 4 Richard Palmer 0000-0001-8728-8083 5 56682__19960__21a1176b893548dc85241deaee3c6dde.pdf 56682 (1).pdf 2021-05-21T14:49:08.1129779 Output 1751069 application/pdf Accepted Manuscript true 2022-03-29T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions |
spellingShingle |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions Richard Palmer |
title_short |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions |
title_full |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions |
title_fullStr |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions |
title_full_unstemmed |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions |
title_sort |
From amorphous to ordered: Structural transformation of Pd nanoclusters in 1-pentyne hydrogenation reactions |
author_id_str_mv |
6ae369618efc7424d9774377536ea519 |
author_id_fullname_str_mv |
6ae369618efc7424d9774377536ea519_***_Richard Palmer |
author |
Richard Palmer |
author2 |
Kuo-Juei Hu Peter R. Ellis Christopher M. Brown Peter T. Bishop Richard Palmer |
format |
Journal article |
container_title |
Journal of Catalysis |
container_volume |
397 |
container_start_page |
58 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0021-9517 |
doi_str_mv |
10.1016/j.jcat.2021.03.019 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Nanostructured palladium catalysts are used industrially for selective alkyne hydrogenation reactions. However, structural changes can lead to a loss of performance. In this study, we show the evolution of the atomic structure of monodispersed Pd nanoclusters undergoing a vapour-phase 1-pentyne hydrogenation reaction. A specific structural transformation, from amorphous to highly symmetrical structures, is observed at the atomic level with aberration-corrected scanning transmission electron microscopy (AC-STEM). This surprising behaviour which occurs concurrently with the alkyne hydrogenation reaction, is clearly size-dependent. The results provide new understanding of the long-term stability of commercial heterogeneous catalysts. |
published_date |
2021-05-01T14:01:48Z |
_version_ |
1822048553772515328 |
score |
11.516414 |