No Cover Image

Journal article 868 views 376 downloads

Nonlinear rotordynamics of a MDOF rotor–stator contact system subjected to frictional and gravitational effects

Elijah Chipato, Alexander Shaw Orcid Logo, Michael Friswell

Mechanical Systems and Signal Processing, Volume: 159, Start page: 107776

Swansea University Authors: Elijah Chipato, Alexander Shaw Orcid Logo, Michael Friswell

  • 56689(2).pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (7.75MB)

Abstract

Rotating machines are intrinsically susceptible to expensive and high-risk faults such as rotor–stator rub. During a rub event normal and tangential forces are generated by the contact and friction that cause wear at the contacting interfaces. In the present work, such forces are computed by assumin...

Full description

Published in: Mechanical Systems and Signal Processing
ISSN: 0888-3270
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56689
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Rotating machines are intrinsically susceptible to expensive and high-risk faults such as rotor–stator rub. During a rub event normal and tangential forces are generated by the contact and friction that cause wear at the contacting interfaces. In the present work, such forces are computed by assuming linear elastic contact and Coulomb friction at multiple interface locations. A finite element shaft-line model of a horizontally mounted rotor is used to demonstrate the approach and the model is reduced for computational efficiency. The modal assurance criterion is used to identify the linear modes that contribute to a given solution. It is observed that bouncing solutions exist with rotor–stator contact in complex machines that can be viewed as internal resonances involving a small number of modes. The responses can become complex because different modes can combine to give the internal resonance (and hence a larger range of frequency ratios) and because of asymmetries, such as gravity. One design goal is to avoid any contact in the system and the analysis in this paper identifies the conditions for internal resonance that should be avoided in a real machine. The complicated dynamics shown here reveal some of the distinct features of contacting solutions and could also be used in condition monitoring to characterise faults.
Keywords: Friction, Gravity, Internal resonance, Backward whirl, Modal assurance criterion
College: Faculty of Science and Engineering
Start Page: 107776