No Cover Image

Journal article 1123 views 218 downloads

Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water

Ben Jones, Katherine R. Davies, S. Anantharaj, Ian Mabbett Orcid Logo, Trystan Watson Orcid Logo, James Durrant Orcid Logo, Moritz Kuehnel, Sudhagar Pitchaimuthu Orcid Logo, Michael Allan

Sustainable Energy & Fuels, Volume: 5, Issue: 12, Pages: 3084 - 3091

Swansea University Authors: Ian Mabbett Orcid Logo, Trystan Watson Orcid Logo, James Durrant Orcid Logo, Moritz Kuehnel, Sudhagar Pitchaimuthu Orcid Logo, Michael Allan

Check full text

DOI (Published version): 10.1039/d1se00232e

Abstract

The feasibility of a solar-driven photoelectrochemical process to generate hydrogen fuel from metal mine polluted water while simultaneously recovering heavy metals has been explored. Electron transport from the photoanode to the cathode plays a key role in generating hydrogen (37.6 µmol h–1 cm–2 at...

Full description

Published in: Sustainable Energy & Fuels
ISSN: 2398-4902
Published: Royal Society of Chemistry (RSC) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56744
first_indexed 2021-04-27T08:52:04Z
last_indexed 2021-09-22T03:19:30Z
id cronfa56744
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-09-21T11:22:49.3885135</datestamp><bib-version>v2</bib-version><id>56744</id><entry>2021-04-27</entry><title>Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water</title><swanseaauthors><author><sid>5363e29b6a34d3e72b5d31140c9b51f0</sid><ORCID>0000-0003-2959-1716</ORCID><firstname>Ian</firstname><surname>Mabbett</surname><name>Ian Mabbett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>210dbad181ce095d6f8bf2bd1d616d4e</sid><firstname>Moritz</firstname><surname>Kuehnel</surname><name>Moritz Kuehnel</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2fdbee02f4bfc5a1b174c8bd04afbd2b</sid><ORCID>0000-0001-9098-8806</ORCID><firstname>Sudhagar</firstname><surname>Pitchaimuthu</surname><name>Sudhagar Pitchaimuthu</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b1f40243f0e1ee0ec5aa706601527f6a</sid><firstname>Michael</firstname><surname>Allan</surname><name>Michael Allan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-04-27</date><deptcode>EAAS</deptcode><abstract>The feasibility of a solar-driven photoelectrochemical process to generate hydrogen fuel from metal mine polluted water while simultaneously recovering heavy metals has been explored. Electron transport from the photoanode to the cathode plays a key role in generating hydrogen (37.6 &#xB5;mol h&#x2013;1 cm&#x2013;2 at 0.2 V RHE, 1 sun illumination), and scavenging Zn2+ ions in the form of ZnO.</abstract><type>Journal Article</type><journal>Sustainable Energy &amp; Fuels</journal><volume>5</volume><journalNumber>12</journalNumber><paginationStart>3084</paginationStart><paginationEnd>3091</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2398-4902</issnElectronic><keywords/><publishedDay>21</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-06-21</publishedDate><doi>10.1039/d1se00232e</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-21T11:22:49.3885135</lastEdited><Created>2021-04-27T09:48:33.5308169</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Ben</firstname><surname>Jones</surname><order>1</order></author><author><firstname>Katherine R.</firstname><surname>Davies</surname><order>2</order></author><author><firstname>S.</firstname><surname>Anantharaj</surname><order>3</order></author><author><firstname>Ian</firstname><surname>Mabbett</surname><orcid>0000-0003-2959-1716</orcid><order>4</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>5</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>6</order></author><author><firstname>Moritz</firstname><surname>Kuehnel</surname><order>7</order></author><author><firstname>Sudhagar</firstname><surname>Pitchaimuthu</surname><orcid>0000-0001-9098-8806</orcid><order>8</order></author><author><firstname>Michael</firstname><surname>Allan</surname><order>9</order></author></authors><documents><document><filename>56744__19759__4ce2220d381a429fb864eb8a1a08b506.pdf</filename><originalFilename>56744.pdf</originalFilename><uploaded>2021-04-27T09:51:37.1815415</uploaded><type>Output</type><contentLength>1351957</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-04-26T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-09-21T11:22:49.3885135 v2 56744 2021-04-27 Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water 5363e29b6a34d3e72b5d31140c9b51f0 0000-0003-2959-1716 Ian Mabbett Ian Mabbett true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 210dbad181ce095d6f8bf2bd1d616d4e Moritz Kuehnel Moritz Kuehnel true false 2fdbee02f4bfc5a1b174c8bd04afbd2b 0000-0001-9098-8806 Sudhagar Pitchaimuthu Sudhagar Pitchaimuthu true false b1f40243f0e1ee0ec5aa706601527f6a Michael Allan Michael Allan true false 2021-04-27 EAAS The feasibility of a solar-driven photoelectrochemical process to generate hydrogen fuel from metal mine polluted water while simultaneously recovering heavy metals has been explored. Electron transport from the photoanode to the cathode plays a key role in generating hydrogen (37.6 µmol h–1 cm–2 at 0.2 V RHE, 1 sun illumination), and scavenging Zn2+ ions in the form of ZnO. Journal Article Sustainable Energy & Fuels 5 12 3084 3091 Royal Society of Chemistry (RSC) 2398-4902 21 6 2021 2021-06-21 10.1039/d1se00232e COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-09-21T11:22:49.3885135 2021-04-27T09:48:33.5308169 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Ben Jones 1 Katherine R. Davies 2 S. Anantharaj 3 Ian Mabbett 0000-0003-2959-1716 4 Trystan Watson 0000-0002-8015-1436 5 James Durrant 0000-0001-8353-7345 6 Moritz Kuehnel 7 Sudhagar Pitchaimuthu 0000-0001-9098-8806 8 Michael Allan 9 56744__19759__4ce2220d381a429fb864eb8a1a08b506.pdf 56744.pdf 2021-04-27T09:51:37.1815415 Output 1351957 application/pdf Accepted Manuscript true 2022-04-26T00:00:00.0000000 true eng http://creativecommons.org/licenses/by-nc-nd/4.0/
title Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
spellingShingle Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
Ian Mabbett
Trystan Watson
James Durrant
Moritz Kuehnel
Sudhagar Pitchaimuthu
Michael Allan
title_short Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
title_full Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
title_fullStr Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
title_full_unstemmed Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
title_sort Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water
author_id_str_mv 5363e29b6a34d3e72b5d31140c9b51f0
a210327b52472cfe8df9b8108d661457
f3dd64bc260e5c07adfa916c27dbd58a
210dbad181ce095d6f8bf2bd1d616d4e
2fdbee02f4bfc5a1b174c8bd04afbd2b
b1f40243f0e1ee0ec5aa706601527f6a
author_id_fullname_str_mv 5363e29b6a34d3e72b5d31140c9b51f0_***_Ian Mabbett
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
210dbad181ce095d6f8bf2bd1d616d4e_***_Moritz Kuehnel
2fdbee02f4bfc5a1b174c8bd04afbd2b_***_Sudhagar Pitchaimuthu
b1f40243f0e1ee0ec5aa706601527f6a_***_Michael Allan
author Ian Mabbett
Trystan Watson
James Durrant
Moritz Kuehnel
Sudhagar Pitchaimuthu
Michael Allan
author2 Ben Jones
Katherine R. Davies
S. Anantharaj
Ian Mabbett
Trystan Watson
James Durrant
Moritz Kuehnel
Sudhagar Pitchaimuthu
Michael Allan
format Journal article
container_title Sustainable Energy & Fuels
container_volume 5
container_issue 12
container_start_page 3084
publishDate 2021
institution Swansea University
issn 2398-4902
doi_str_mv 10.1039/d1se00232e
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description The feasibility of a solar-driven photoelectrochemical process to generate hydrogen fuel from metal mine polluted water while simultaneously recovering heavy metals has been explored. Electron transport from the photoanode to the cathode plays a key role in generating hydrogen (37.6 µmol h–1 cm–2 at 0.2 V RHE, 1 sun illumination), and scavenging Zn2+ ions in the form of ZnO.
published_date 2021-06-21T08:05:22Z
_version_ 1821935531562369024
score 11.048085