No Cover Image

Journal article 259 views 147 downloads

The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis

Juanying Xie, Mingzhao Wang, Shengquan Xu, Zhao Huang, Philip Grant

Frontiers in Genetics, Volume: 12

Swansea University Author: Philip Grant

  • 57084.pdf

    PDF | Version of Record

    © 2021 Xie, Wang, Xu, Huang and Grant. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)

    Download (5.86MB)
Published in: Frontiers in Genetics
ISSN: 1664-8021
Published: Frontiers Media SA 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57084
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-06-10T09:17:02Z
last_indexed 2021-06-11T03:22:53Z
id cronfa57084
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-06-10T10:19:52.1582019</datestamp><bib-version>v2</bib-version><id>57084</id><entry>2021-06-10</entry><title>The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis</title><swanseaauthors><author><sid>3c75caf0df70504d841270d636835fde</sid><ORCID/><firstname>Philip</firstname><surname>Grant</surname><name>Philip Grant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-06-10</date><deptcode>SCS</deptcode><abstract/><type>Journal Article</type><journal>Frontiers in Genetics</journal><volume>12</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Frontiers Media SA</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1664-8021</issnElectronic><keywords>unsupervised feature selection, gene selection, standard deviation, cosine similarity, 2-dimensionalspace</keywords><publishedDay>13</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-13</publishedDate><doi>10.3389/fgene.2021.684100</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-06-10T10:19:52.1582019</lastEdited><Created>2021-06-10T10:11:51.3539095</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Juanying</firstname><surname>Xie</surname><order>1</order></author><author><firstname>Mingzhao</firstname><surname>Wang</surname><order>2</order></author><author><firstname>Shengquan</firstname><surname>Xu</surname><order>3</order></author><author><firstname>Zhao</firstname><surname>Huang</surname><order>4</order></author><author><firstname>Philip</firstname><surname>Grant</surname><orcid/><order>5</order></author></authors><documents><document><filename>57084__20115__44df79b4eac84dafb61aac53c02af82f.pdf</filename><originalFilename>57084.pdf</originalFilename><uploaded>2021-06-10T10:17:45.2347720</uploaded><type>Output</type><contentLength>6140794</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2021 Xie, Wang, Xu, Huang and Grant. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-06-10T10:19:52.1582019 v2 57084 2021-06-10 The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis 3c75caf0df70504d841270d636835fde Philip Grant Philip Grant true false 2021-06-10 SCS Journal Article Frontiers in Genetics 12 Frontiers Media SA 1664-8021 unsupervised feature selection, gene selection, standard deviation, cosine similarity, 2-dimensionalspace 13 5 2021 2021-05-13 10.3389/fgene.2021.684100 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2021-06-10T10:19:52.1582019 2021-06-10T10:11:51.3539095 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Juanying Xie 1 Mingzhao Wang 2 Shengquan Xu 3 Zhao Huang 4 Philip Grant 5 57084__20115__44df79b4eac84dafb61aac53c02af82f.pdf 57084.pdf 2021-06-10T10:17:45.2347720 Output 6140794 application/pdf Version of Record true © 2021 Xie, Wang, Xu, Huang and Grant. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) true eng http://creativecommons.org/licenses/by/4.0/
title The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
spellingShingle The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
Philip Grant
title_short The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
title_full The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
title_fullStr The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
title_full_unstemmed The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
title_sort The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
author_id_str_mv 3c75caf0df70504d841270d636835fde
author_id_fullname_str_mv 3c75caf0df70504d841270d636835fde_***_Philip Grant
author Philip Grant
author2 Juanying Xie
Mingzhao Wang
Shengquan Xu
Zhao Huang
Philip Grant
format Journal article
container_title Frontiers in Genetics
container_volume 12
publishDate 2021
institution Swansea University
issn 1664-8021
doi_str_mv 10.3389/fgene.2021.684100
publisher Frontiers Media SA
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
published_date 2021-05-13T04:12:33Z
_version_ 1763753856559218688
score 11.03559