Journal article 284 views 188 downloads
Frequency drift in MR spectroscopy at 3T
NeuroImage, Volume: 241, Start page: 118430
Swansea University Author:
Stephen Johnston
-
PDF | Version of Record
©2021 The Authors. This is an open access article under the CC BY-NC-ND license
Download (2.4MB)
DOI (Published version): 10.1016/j.neuroimage.2021.118430
Abstract
Purpose Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-ti...
Published in: | NeuroImage |
---|---|
ISSN: | 1053-8119 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57471 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-07-29T10:05:04Z |
---|---|
last_indexed |
2023-01-11T14:37:24Z |
id |
cronfa57471 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-11-29T11:20:51.3188561</datestamp><bib-version>v2</bib-version><id>57471</id><entry>2021-07-29</entry><title>Frequency drift in MR spectroscopy at 3T</title><swanseaauthors><author><sid>a5a4e9fd4ddde98a4cc3c1e3c6fa310f</sid><ORCID>0000-0001-9360-8856</ORCID><firstname>Stephen</firstname><surname>Johnston</surname><name>Stephen Johnston</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-07-29</date><deptcode>HPS</deptcode><abstract>Purpose Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson’s and intraclass correlation coefficients (ICC). Results Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed. Keywords: magnetic resonance spectroscopy (MRS), frequency drift, 3T, PRESS, multi-vendor, multi-site</abstract><type>Journal Article</type><journal>NeuroImage</journal><volume>241</volume><journalNumber/><paginationStart>118430</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1053-8119</issnPrint><issnElectronic/><keywords>Magnetic resonance spectroscopy (MRS); Frequency drift; 3T; Press; Multi-vendor; Multi-site</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-11-01</publishedDate><doi>10.1016/j.neuroimage.2021.118430</doi><url/><notes/><college>COLLEGE NANME</college><department>Psychology</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-11-29T11:20:51.3188561</lastEdited><Created>2021-07-29T11:01:42.6309593</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">School of Psychology</level></path><authors><author><firstname>Steve C.N.</firstname><surname>Hui</surname><order>1</order></author><author><firstname>Mark</firstname><surname>Mikkelsen</surname><order>2</order></author><author><firstname>Helge J.</firstname><surname>Zöllner</surname><order>3</order></author><author><firstname>Vishwadeep</firstname><surname>Ahluwalia</surname><order>4</order></author><author><firstname>Sarael</firstname><surname>Alcauter</surname><order>5</order></author><author><firstname>Laima</firstname><surname>Baltusis</surname><order>6</order></author><author><firstname>Deborah A.</firstname><surname>Barany</surname><order>7</order></author><author><firstname>Laura R.</firstname><surname>Barlow</surname><order>8</order></author><author><firstname>Robert</firstname><surname>Becker</surname><order>9</order></author><author><firstname>Jeffrey I.</firstname><surname>Berman</surname><order>10</order></author><author><firstname>Adam</firstname><surname>Berrington</surname><order>11</order></author><author><firstname>Pallab K.</firstname><surname>Bhattacharyya</surname><order>12</order></author><author><firstname>Jakob Udby</firstname><surname>Blicher</surname><order>13</order></author><author><firstname>Wolfgang</firstname><surname>Bogner</surname><order>14</order></author><author><firstname>Mark S.</firstname><surname>Brown</surname><order>15</order></author><author><firstname>Vince D.</firstname><surname>Calhoun</surname><order>16</order></author><author><firstname>Ryan</firstname><surname>Castillo</surname><order>17</order></author><author><firstname>Kim M.</firstname><surname>Cecil</surname><order>18</order></author><author><firstname>Yeo Bi</firstname><surname>Choi</surname><order>19</order></author><author><firstname>Winnie C.W.</firstname><surname>Chu</surname><order>20</order></author><author><firstname>William T.</firstname><surname>Clarke</surname><order>21</order></author><author><firstname>Alexander R.</firstname><surname>Craven</surname><order>22</order></author><author><firstname>Koen</firstname><surname>Cuypers</surname><order>23</order></author><author><firstname>Michael</firstname><surname>Dacko</surname><order>24</order></author><author><firstname>Camilo de la</firstname><surname>Fuente-Sandoval</surname><order>25</order></author><author><firstname>Patricia</firstname><surname>Desmond</surname><order>26</order></author><author><firstname>Aleksandra</firstname><surname>Domagalik</surname><order>27</order></author><author><firstname>Julien</firstname><surname>Dumont</surname><order>28</order></author><author><firstname>Niall W.</firstname><surname>Duncan</surname><order>29</order></author><author><firstname>Ulrike</firstname><surname>Dydak</surname><order>30</order></author><author><firstname>Katherine</firstname><surname>Dyke</surname><order>31</order></author><author><firstname>David A.</firstname><surname>Edmondson</surname><order>32</order></author><author><firstname>Gabriele</firstname><surname>Ende</surname><order>33</order></author><author><firstname>Lars</firstname><surname>Ersland</surname><order>34</order></author><author><firstname>C. John</firstname><surname>Evans</surname><order>35</order></author><author><firstname>Alan S.R.</firstname><surname>Fermin</surname><order>36</order></author><author><firstname>Antonio</firstname><surname>Ferretti</surname><order>37</order></author><author><firstname>Ariane</firstname><surname>Fillmer</surname><order>38</order></author><author><firstname>Tao</firstname><surname>Gong</surname><order>39</order></author><author><firstname>Ian</firstname><surname>Greenhouse</surname><order>40</order></author><author><firstname>James T.</firstname><surname>Grist</surname><order>41</order></author><author><firstname>Meng</firstname><surname>Gu</surname><order>42</order></author><author><firstname>Ashley D.</firstname><surname>Harris</surname><order>43</order></author><author><firstname>Katarzyna</firstname><surname>Hat</surname><order>44</order></author><author><firstname>Stefanie</firstname><surname>Heba</surname><order>45</order></author><author><firstname>Eva</firstname><surname>Heckova</surname><order>46</order></author><author><firstname>John P.</firstname><surname>Hegarty</surname><order>47</order></author><author><firstname>Kirstin-Friederike</firstname><surname>Heise</surname><order>48</order></author><author><firstname>Shiori</firstname><surname>Honda</surname><order>49</order></author><author><firstname>Aaron</firstname><surname>Jacobson</surname><order>50</order></author><author><firstname>Jacobus F.A.</firstname><surname>Jansen</surname><order>51</order></author><author><firstname>Christopher W.</firstname><surname>Jenkins</surname><order>52</order></author><author><firstname>Stephen</firstname><surname>Johnston</surname><orcid>0000-0001-9360-8856</orcid><order>53</order></author><author><firstname>Christoph</firstname><surname>Juchem</surname><order>54</order></author><author><firstname>Alayar</firstname><surname>Kangarlu</surname><order>55</order></author><author><firstname>Adam B.</firstname><surname>Kerr</surname><order>56</order></author><author><firstname>Karl</firstname><surname>Landheer</surname><order>57</order></author><author><firstname>Thomas</firstname><surname>Lange</surname><order>58</order></author><author><firstname>Phil</firstname><surname>Lee</surname><order>59</order></author><author><firstname>Swati Rane</firstname><surname>Levendovszky</surname><order>60</order></author><author><firstname>Catherine</firstname><surname>Limperopoulos</surname><order>61</order></author><author><firstname>Feng</firstname><surname>Liu</surname><order>62</order></author><author><firstname>William</firstname><surname>Lloyd</surname><order>63</order></author><author><firstname>David J.</firstname><surname>Lythgoe</surname><order>64</order></author><author><firstname>Maro G.</firstname><surname>Machizawa</surname><order>65</order></author><author><firstname>Erin L.</firstname><surname>MacMillan</surname><order>66</order></author><author><firstname>Richard J.</firstname><surname>Maddock</surname><order>67</order></author><author><firstname>Andrei V.</firstname><surname>Manzhurtsev</surname><order>68</order></author><author><firstname>María L.</firstname><surname>Martinez-Gudino</surname><order>69</order></author><author><firstname>Jack J.</firstname><surname>Miller</surname><order>70</order></author><author><firstname>Heline</firstname><surname>Mirzakhanian</surname><order>71</order></author><author><firstname>Marta</firstname><surname>Moreno-Ortega</surname><order>72</order></author><author><firstname>Paul G.</firstname><surname>Mullins</surname><order>73</order></author><author><firstname>Shinichiro</firstname><surname>Nakajima</surname><order>74</order></author><author><firstname>Jamie</firstname><surname>Near</surname><order>75</order></author><author><firstname>Ralph</firstname><surname>Noeske</surname><order>76</order></author><author><firstname>Wibeke</firstname><surname>Nordhøy</surname><order>77</order></author><author><firstname>Georg</firstname><surname>Oeltzschner</surname><order>78</order></author><author><firstname>Raul</firstname><surname>Osorio-Duran</surname><order>79</order></author><author><firstname>Maria C.G.</firstname><surname>Otaduy</surname><order>80</order></author><author><firstname>Erick H.</firstname><surname>Pasaye</surname><order>81</order></author><author><firstname>Ronald</firstname><surname>Peeters</surname><order>82</order></author><author><firstname>Scott J.</firstname><surname>Peltier</surname><order>83</order></author><author><firstname>Ulrich</firstname><surname>Pilatus</surname><order>84</order></author><author><firstname>Nenad</firstname><surname>Polomac</surname><order>85</order></author><author><firstname>Eric C.</firstname><surname>Porges</surname><order>86</order></author><author><firstname>Subechhya</firstname><surname>Pradhan</surname><order>87</order></author><author><firstname>James Joseph</firstname><surname>Prisciandaro</surname><order>88</order></author><author><firstname>Nicolaas A</firstname><surname>Puts</surname><order>89</order></author><author><firstname>Caroline D.</firstname><surname>Rae</surname><order>90</order></author><author><firstname>Francisco</firstname><surname>Reyes-Madrigal</surname><order>91</order></author><author><firstname>Timothy P.L.</firstname><surname>Roberts</surname><order>92</order></author><author><firstname>Caroline E.</firstname><surname>Robertson</surname><order>93</order></author><author><firstname>Jens T.</firstname><surname>Rosenberg</surname><order>94</order></author><author><firstname>Diana-Georgiana</firstname><surname>Rotaru</surname><order>95</order></author><author><firstname>Ruth L O'Gorman</firstname><surname>Tuura</surname><order>96</order></author><author><firstname>Muhammad G.</firstname><surname>Saleh</surname><order>97</order></author><author><firstname>Kristian</firstname><surname>Sandberg</surname><order>98</order></author><author><firstname>Ryan</firstname><surname>Sangill</surname><order>99</order></author><author><firstname>Keith</firstname><surname>Schembri</surname><order>100</order></author><author><firstname>Anouk</firstname><surname>Schrantee</surname><order>101</order></author><author><firstname>Natalia A.</firstname><surname>Semenova</surname><order>102</order></author><author><firstname>Debra</firstname><surname>Singel</surname><order>103</order></author><author><firstname>Rouslan</firstname><surname>Sitnikov</surname><order>104</order></author><author><firstname>Jolinda</firstname><surname>Smith</surname><order>105</order></author><author><firstname>Yulu</firstname><surname>Song</surname><order>106</order></author><author><firstname>Craig</firstname><surname>Stark</surname><order>107</order></author><author><firstname>Diederick</firstname><surname>Stoffers</surname><order>108</order></author><author><firstname>Stephan P.</firstname><surname>Swinnen</surname><order>109</order></author><author><firstname>Rongwen</firstname><surname>Tain</surname><order>110</order></author><author><firstname>Costin</firstname><surname>Tanase</surname><order>111</order></author><author><firstname>Sofie</firstname><surname>Tapper</surname><order>112</order></author><author><firstname>Martin</firstname><surname>Tegenthoff</surname><order>113</order></author><author><firstname>Thomas</firstname><surname>Thiel</surname><order>114</order></author><author><firstname>Marc</firstname><surname>Thioux</surname><order>115</order></author><author><firstname>Peter</firstname><surname>Truong</surname><order>116</order></author><author><firstname>Pim van</firstname><surname>Dijk</surname><order>117</order></author><author><firstname>Nolan</firstname><surname>Vella</surname><order>118</order></author><author><firstname>Rishma</firstname><surname>Vidyasagar</surname><order>119</order></author><author><firstname>Andrej</firstname><surname>Vovk</surname><order>120</order></author><author><firstname>Guangbin</firstname><surname>Wang</surname><order>121</order></author><author><firstname>Lars T.</firstname><surname>Westlye</surname><order>122</order></author><author><firstname>Timothy K.</firstname><surname>Wilbur</surname><order>123</order></author><author><firstname>William R.</firstname><surname>Willoughby</surname><order>124</order></author><author><firstname>Martin</firstname><surname>Wilson</surname><order>125</order></author><author><firstname>Hans-Jörg</firstname><surname>Wittsack</surname><order>126</order></author><author><firstname>Adam J.</firstname><surname>Woods</surname><order>127</order></author><author><firstname>Yen-Chien</firstname><surname>Wu</surname><order>128</order></author><author><firstname>Junqian</firstname><surname>Xu</surname><order>129</order></author><author><firstname>Maria Yanez</firstname><surname>Lopez</surname><order>130</order></author><author><firstname>David K.W.</firstname><surname>Yeung</surname><order>131</order></author><author><firstname>Qun</firstname><surname>Zhao</surname><order>132</order></author><author><firstname>Xiaopeng</firstname><surname>Zhou</surname><order>133</order></author><author><firstname>Gasper</firstname><surname>Zupan</surname><order>134</order></author><author><firstname>Richard A.E.</firstname><surname>Edden</surname><order>135</order></author></authors><documents><document><filename>57471__20675__050b4af3b6764125868bfd1a9e98f605.pdf</filename><originalFilename>57471.pdf</originalFilename><uploaded>2021-08-19T14:10:07.7961457</uploaded><type>Output</type><contentLength>2513956</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>©2021 The Authors. This is an open access article under the CC BY-NC-ND license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-11-29T11:20:51.3188561 v2 57471 2021-07-29 Frequency drift in MR spectroscopy at 3T a5a4e9fd4ddde98a4cc3c1e3c6fa310f 0000-0001-9360-8856 Stephen Johnston Stephen Johnston true false 2021-07-29 HPS Purpose Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson’s and intraclass correlation coefficients (ICC). Results Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed. Keywords: magnetic resonance spectroscopy (MRS), frequency drift, 3T, PRESS, multi-vendor, multi-site Journal Article NeuroImage 241 118430 Elsevier BV 1053-8119 Magnetic resonance spectroscopy (MRS); Frequency drift; 3T; Press; Multi-vendor; Multi-site 1 11 2021 2021-11-01 10.1016/j.neuroimage.2021.118430 COLLEGE NANME Psychology COLLEGE CODE HPS Swansea University 2022-11-29T11:20:51.3188561 2021-07-29T11:01:42.6309593 Faculty of Medicine, Health and Life Sciences School of Psychology Steve C.N. Hui 1 Mark Mikkelsen 2 Helge J. Zöllner 3 Vishwadeep Ahluwalia 4 Sarael Alcauter 5 Laima Baltusis 6 Deborah A. Barany 7 Laura R. Barlow 8 Robert Becker 9 Jeffrey I. Berman 10 Adam Berrington 11 Pallab K. Bhattacharyya 12 Jakob Udby Blicher 13 Wolfgang Bogner 14 Mark S. Brown 15 Vince D. Calhoun 16 Ryan Castillo 17 Kim M. Cecil 18 Yeo Bi Choi 19 Winnie C.W. Chu 20 William T. Clarke 21 Alexander R. Craven 22 Koen Cuypers 23 Michael Dacko 24 Camilo de la Fuente-Sandoval 25 Patricia Desmond 26 Aleksandra Domagalik 27 Julien Dumont 28 Niall W. Duncan 29 Ulrike Dydak 30 Katherine Dyke 31 David A. Edmondson 32 Gabriele Ende 33 Lars Ersland 34 C. John Evans 35 Alan S.R. Fermin 36 Antonio Ferretti 37 Ariane Fillmer 38 Tao Gong 39 Ian Greenhouse 40 James T. Grist 41 Meng Gu 42 Ashley D. Harris 43 Katarzyna Hat 44 Stefanie Heba 45 Eva Heckova 46 John P. Hegarty 47 Kirstin-Friederike Heise 48 Shiori Honda 49 Aaron Jacobson 50 Jacobus F.A. Jansen 51 Christopher W. Jenkins 52 Stephen Johnston 0000-0001-9360-8856 53 Christoph Juchem 54 Alayar Kangarlu 55 Adam B. Kerr 56 Karl Landheer 57 Thomas Lange 58 Phil Lee 59 Swati Rane Levendovszky 60 Catherine Limperopoulos 61 Feng Liu 62 William Lloyd 63 David J. Lythgoe 64 Maro G. Machizawa 65 Erin L. MacMillan 66 Richard J. Maddock 67 Andrei V. Manzhurtsev 68 María L. Martinez-Gudino 69 Jack J. Miller 70 Heline Mirzakhanian 71 Marta Moreno-Ortega 72 Paul G. Mullins 73 Shinichiro Nakajima 74 Jamie Near 75 Ralph Noeske 76 Wibeke Nordhøy 77 Georg Oeltzschner 78 Raul Osorio-Duran 79 Maria C.G. Otaduy 80 Erick H. Pasaye 81 Ronald Peeters 82 Scott J. Peltier 83 Ulrich Pilatus 84 Nenad Polomac 85 Eric C. Porges 86 Subechhya Pradhan 87 James Joseph Prisciandaro 88 Nicolaas A Puts 89 Caroline D. Rae 90 Francisco Reyes-Madrigal 91 Timothy P.L. Roberts 92 Caroline E. Robertson 93 Jens T. Rosenberg 94 Diana-Georgiana Rotaru 95 Ruth L O'Gorman Tuura 96 Muhammad G. Saleh 97 Kristian Sandberg 98 Ryan Sangill 99 Keith Schembri 100 Anouk Schrantee 101 Natalia A. Semenova 102 Debra Singel 103 Rouslan Sitnikov 104 Jolinda Smith 105 Yulu Song 106 Craig Stark 107 Diederick Stoffers 108 Stephan P. Swinnen 109 Rongwen Tain 110 Costin Tanase 111 Sofie Tapper 112 Martin Tegenthoff 113 Thomas Thiel 114 Marc Thioux 115 Peter Truong 116 Pim van Dijk 117 Nolan Vella 118 Rishma Vidyasagar 119 Andrej Vovk 120 Guangbin Wang 121 Lars T. Westlye 122 Timothy K. Wilbur 123 William R. Willoughby 124 Martin Wilson 125 Hans-Jörg Wittsack 126 Adam J. Woods 127 Yen-Chien Wu 128 Junqian Xu 129 Maria Yanez Lopez 130 David K.W. Yeung 131 Qun Zhao 132 Xiaopeng Zhou 133 Gasper Zupan 134 Richard A.E. Edden 135 57471__20675__050b4af3b6764125868bfd1a9e98f605.pdf 57471.pdf 2021-08-19T14:10:07.7961457 Output 2513956 application/pdf Version of Record true ©2021 The Authors. This is an open access article under the CC BY-NC-ND license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Frequency drift in MR spectroscopy at 3T |
spellingShingle |
Frequency drift in MR spectroscopy at 3T Stephen Johnston |
title_short |
Frequency drift in MR spectroscopy at 3T |
title_full |
Frequency drift in MR spectroscopy at 3T |
title_fullStr |
Frequency drift in MR spectroscopy at 3T |
title_full_unstemmed |
Frequency drift in MR spectroscopy at 3T |
title_sort |
Frequency drift in MR spectroscopy at 3T |
author_id_str_mv |
a5a4e9fd4ddde98a4cc3c1e3c6fa310f |
author_id_fullname_str_mv |
a5a4e9fd4ddde98a4cc3c1e3c6fa310f_***_Stephen Johnston |
author |
Stephen Johnston |
author2 |
Steve C.N. Hui Mark Mikkelsen Helge J. Zöllner Vishwadeep Ahluwalia Sarael Alcauter Laima Baltusis Deborah A. Barany Laura R. Barlow Robert Becker Jeffrey I. Berman Adam Berrington Pallab K. Bhattacharyya Jakob Udby Blicher Wolfgang Bogner Mark S. Brown Vince D. Calhoun Ryan Castillo Kim M. Cecil Yeo Bi Choi Winnie C.W. Chu William T. Clarke Alexander R. Craven Koen Cuypers Michael Dacko Camilo de la Fuente-Sandoval Patricia Desmond Aleksandra Domagalik Julien Dumont Niall W. Duncan Ulrike Dydak Katherine Dyke David A. Edmondson Gabriele Ende Lars Ersland C. John Evans Alan S.R. Fermin Antonio Ferretti Ariane Fillmer Tao Gong Ian Greenhouse James T. Grist Meng Gu Ashley D. Harris Katarzyna Hat Stefanie Heba Eva Heckova John P. Hegarty Kirstin-Friederike Heise Shiori Honda Aaron Jacobson Jacobus F.A. Jansen Christopher W. Jenkins Stephen Johnston Christoph Juchem Alayar Kangarlu Adam B. Kerr Karl Landheer Thomas Lange Phil Lee Swati Rane Levendovszky Catherine Limperopoulos Feng Liu William Lloyd David J. Lythgoe Maro G. Machizawa Erin L. MacMillan Richard J. Maddock Andrei V. Manzhurtsev María L. Martinez-Gudino Jack J. Miller Heline Mirzakhanian Marta Moreno-Ortega Paul G. Mullins Shinichiro Nakajima Jamie Near Ralph Noeske Wibeke Nordhøy Georg Oeltzschner Raul Osorio-Duran Maria C.G. Otaduy Erick H. Pasaye Ronald Peeters Scott J. Peltier Ulrich Pilatus Nenad Polomac Eric C. Porges Subechhya Pradhan James Joseph Prisciandaro Nicolaas A Puts Caroline D. Rae Francisco Reyes-Madrigal Timothy P.L. Roberts Caroline E. Robertson Jens T. Rosenberg Diana-Georgiana Rotaru Ruth L O'Gorman Tuura Muhammad G. Saleh Kristian Sandberg Ryan Sangill Keith Schembri Anouk Schrantee Natalia A. Semenova Debra Singel Rouslan Sitnikov Jolinda Smith Yulu Song Craig Stark Diederick Stoffers Stephan P. Swinnen Rongwen Tain Costin Tanase Sofie Tapper Martin Tegenthoff Thomas Thiel Marc Thioux Peter Truong Pim van Dijk Nolan Vella Rishma Vidyasagar Andrej Vovk Guangbin Wang Lars T. Westlye Timothy K. Wilbur William R. Willoughby Martin Wilson Hans-Jörg Wittsack Adam J. Woods Yen-Chien Wu Junqian Xu Maria Yanez Lopez David K.W. Yeung Qun Zhao Xiaopeng Zhou Gasper Zupan Richard A.E. Edden |
format |
Journal article |
container_title |
NeuroImage |
container_volume |
241 |
container_start_page |
118430 |
publishDate |
2021 |
institution |
Swansea University |
issn |
1053-8119 |
doi_str_mv |
10.1016/j.neuroimage.2021.118430 |
publisher |
Elsevier BV |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
School of Psychology{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}School of Psychology |
document_store_str |
1 |
active_str |
0 |
description |
Purpose Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson’s and intraclass correlation coefficients (ICC). Results Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed. Keywords: magnetic resonance spectroscopy (MRS), frequency drift, 3T, PRESS, multi-vendor, multi-site |
published_date |
2021-11-01T04:13:14Z |
_version_ |
1763753899665129472 |
score |
10.9517765 |