Journal article 963 views 72 downloads
Experimental study of lag-twist coupling concept for rotor blade application
Composite Structures, Volume: 275, Start page: 114417
Swansea University Authors: Huaiyuan Gu, Mohammadreza Amoozgar, Alexander Shaw , Jiaying Zhang , Michael Friswell
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (1.71MB)
DOI (Published version): 10.1016/j.compstruct.2021.114417
Abstract
A novel passive twist morphing concept is examined for helicopter blades. The concept is demonstrated using a thin-walled rectangular composite beam created with symmetric layup to obtain bend-twist property. The twist of a rotor blade is proposed to be actuated though a movable mass at the blade ti...
Published in: | Composite Structures |
---|---|
ISSN: | 0263-8223 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57473 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
A novel passive twist morphing concept is examined for helicopter blades. The concept is demonstrated using a thin-walled rectangular composite beam created with symmetric layup to obtain bend-twist property. The twist of a rotor blade is proposed to be actuated though a movable mass at the blade tip which is able to provide a range of lagwise bending moment during rotation as a result of the centrifugal force. First a set of static bending test is performed which provides detailed characterisation of the deformation and strain distribution of the composite beam subjected to a number of bending loads. The results of the experiment fully verify numerical predictions including finite element approach (FE) and beam cross sectional analysis. A series of simulations are then conducted using the verified numerical model to demonstrate how the desired twist can be effectively achieved by manipulating the size and location of the mass. |
---|---|
College: |
Faculty of Science and Engineering |
Start Page: |
114417 |