Journal article 14060 views 129 downloads
A complete thermo-electro-viscoelastic characterization of dielectric elastomers - Part II: Continuum modelling approach
Journal of the Mechanics and Physics of Solids, Volume: 157, Start page: 104625
Swansea University Author: Mokarram Hossain
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (2.73MB)
DOI (Published version): 10.1016/j.jmps.2021.104625
Abstract
A comprehensive experimental study performed under a combination of thermo-electro-mechanical loads applied to a widely used electro-active polymer, is presented in the Part I of this work (Mehnert et al., 2021). Soft polymeric materials, used as base materials in electro-active polymers, are highly...
Published in: | Journal of the Mechanics and Physics of Solids |
---|---|
ISSN: | 0022-5096 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57488 |
Abstract: |
A comprehensive experimental study performed under a combination of thermo-electro-mechanical loads applied to a widely used electro-active polymer, is presented in the Part I of this work (Mehnert et al., 2021). Soft polymeric materials, used as base materials in electro-active polymers, are highly susceptible to temperature changes. Hence, thermal influences on their behavior have to be investigated precisely. Constitutive modelling and numerical simulation of electro-active polymers are active fields of current research. However, on the one hand, their experimental study under complex loading conditions is non-trivial. On the other hand, very few constitutive modelling approaches meet with experimental data obtained from thermo-electro-mechanical loading conditions. In this contribution, we aim to develop a thermo-electro-mechanically coupled model, which will closely replicate the response of an electro-active polymer investigated under a combination of thermal, electric and mechanical loads. Once the model is calibrated with the experimental data described in Part I of this contribution, it is validated with a different set of data, which shows excellent agreement with experimental findings. |
---|---|
College: |
Faculty of Science and Engineering |
Start Page: |
104625 |