No Cover Image

Journal article 103 views

A spherical-harmonic-based approach to discrete element modeling of 3D irregular particles

Xiang Wang, Zhen‐Yu Yin, Hao Xiong, Dong Su, Yuntian Feng Orcid Logo

International Journal for Numerical Methods in Engineering, Volume: 122, Issue: 20

Swansea University Author: Yuntian Feng Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1002/nme.6766

Abstract

Different from previous discrete element methods (DEM), where irregular 3D particle shapes are approximated by subspheres, vertices, or voxels, this study aims to develop an innovative and computationally effective DEM method directly employing spherical harmonic functions for simulations of 3D irre...

Full description

Published in: International Journal for Numerical Methods in Engineering
ISSN: 0029-5981 1097-0207
Published: Wiley 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57503
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Different from previous discrete element methods (DEM), where irregular 3D particle shapes are approximated by subspheres, vertices, or voxels, this study aims to develop an innovative and computationally effective DEM method directly employing spherical harmonic functions for simulations of 3D irregular-shaped particles. First, the discrete surface points of a 3D irregular-shaped particle are represented by spherical harmonic functions with only a limited number of harmonic coefficients to restore the particle morphology. Then, the intrinsic physical quantities are computed directly using spherical harmonic functions. Next, specific algorithms for interparticle overlapping detection and contact resolution involving the spherical harmonic functions are developed. Subsequently, the interparticle contact forces, moments, and particle movements are computed. The feasibility and capability of the proposed 3D method are verified by simulating random deposition of superellipsoids, repose angle tests, and triaxial tests on particles with various shapes. The proposed method could pave a viable pathway for realistic modeling of granular media pertaining to various engineering and industrial processes.
Keywords: computational particle mechanics; contact detection and resolution; discrete element method; irregular-shaped particles; spherical harmonics
College: College of Engineering
Issue: 20