Journal article 799 views 164 downloads
Wave propagation in randomly parameterized 2D lattices via machine learning
Composite Structures, Volume: 275, Start page: 114386
Swansea University Authors: Tanmoy Chatterjee, Danilo Karlicic , Sondipon Adhikari , Michael Friswell
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (3.79MB)
DOI (Published version): 10.1016/j.compstruct.2021.114386
Abstract
Periodic structures attenuate wave propagation in a specified frequency range, such that a desired bandgap behaviour can be obtained. Most periodic structures are produced by additive manufacturing. However, it is recently found that the variability in the manufacturing processes can lead to a signi...
Published in: | Composite Structures |
---|---|
ISSN: | 0263-8223 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57610 |
Abstract: |
Periodic structures attenuate wave propagation in a specified frequency range, such that a desired bandgap behaviour can be obtained. Most periodic structures are produced by additive manufacturing. However, it is recently found that the variability in the manufacturing processes can lead to a significant deviation from the desired behaviour. This paper investigates the elastic wave propagation of stochastic hexagonal periodic lattice structures considering micro-structural variability. Thus, the effect of uncertainties in the material and geometrical parameters of the unit cell is quantified on the wave propagation in hexagonal lattices. Based on Bloch’s theorem and the finite element method, the band structures are determined as a function of the frequency and wave vector at the unit cell level and later scaled-up via full-scale simulations of finite metamaterials with a prescribed number of cells. State of the practice machine learning techniques, namely the Gaussian process, multi-layer perceptron, radial basis neural network and support vector machine, are employed as grey-box meta-models to capture the stochastic wave propagation response. The results demonstrate good accuracy by validation with Monte Carlo simulations. The study illustrates that considering the effect of uncertainties on the wave propagation behaviour of hexagonal periodic lattices is critical for their practical applicability and desirable performance. Based on the results, the manufacturing tolerances of the hexagonal lattices can be obtained to attain a bandgap within a certain frequency band. |
---|---|
Keywords: |
Manufacturing variability, Hexagonal lattice, Wave propagation, Machine learning, Bloch theorem |
College: |
Faculty of Science and Engineering |
Start Page: |
114386 |