No Cover Image

Journal article 15887 views 79 downloads

Lithium ion battery recycling using high-intensity ultrasonication

Chunhong Lei, Iain Aldous, Jennifer M. Hartley, Dana L. Thompson, Sean Scott, Rowan Hanson Orcid Logo, Paul A. Anderson, Emma Kendrick, Rob Sommerville, Karl S. Ryder, Andrew P. Abbott

Green Chemistry, Volume: 23, Issue: 13, Pages: 4710 - 4715

Swansea University Authors: Iain Aldous, Rowan Hanson Orcid Logo

  • 57611.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

    Download (1.52MB)

Check full text

DOI (Published version): 10.1039/d1gc01623g

Abstract

Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and efficient recycling protocols. Current methods are based on either hydrometallurgical or pyro...

Full description

Published in: Green Chemistry
ISSN: 1463-9262 1463-9270
Published: Royal Society of Chemistry (RSC) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57611
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-08-13T09:04:39Z
last_indexed 2021-09-09T03:21:05Z
id cronfa57611
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-09-08T11:19:31.0825814</datestamp><bib-version>v2</bib-version><id>57611</id><entry>2021-08-13</entry><title>Lithium ion battery recycling using high-intensity ultrasonication</title><swanseaauthors><author><sid>87867d675f1cd66804b1c6c2626cac24</sid><firstname>Iain</firstname><surname>Aldous</surname><name>Iain Aldous</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7209968799fca54ede29c898ea12db49</sid><ORCID>0000-0003-2733-9066</ORCID><firstname>Rowan</firstname><surname>Hanson</surname><name>Rowan Hanson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-08-13</date><deptcode>CHEG</deptcode><abstract>Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and efficient recycling protocols. Current methods are based on either hydrometallurgical or pyrometallurgical methods. The development of efficient separation techniques of waste lithium ion batteries into processable waste streams is needed to reduce material loss during recycling. Here we show a rapid and simple method for removing the active material from composite electrodes using high powered ultrasound in a continuous flow process. Cavitation at the electrode interface enables rapid and selective breaking of the adhesive bond, enabling an electrode to be delaminated in a matter of seconds. This enables the amount of material that can be processed in a given time and volume to be increased by a factor of approximately 100. It also produces a material of higher purity and value that can potentially be directly recycled into new electrodes.</abstract><type>Journal Article</type><journal>Green Chemistry</journal><volume>23</volume><journalNumber>13</journalNumber><paginationStart>4710</paginationStart><paginationEnd>4715</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1463-9262</issnPrint><issnElectronic>1463-9270</issnElectronic><keywords/><publishedDay>10</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-06-10</publishedDate><doi>10.1039/d1gc01623g</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders>Faraday Institution (grant codes FIRG005 and FIRG006)</funders><lastEdited>2021-09-08T11:19:31.0825814</lastEdited><Created>2021-08-13T10:02:34.2917989</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Chunhong</firstname><surname>Lei</surname><order>1</order></author><author><firstname>Iain</firstname><surname>Aldous</surname><order>2</order></author><author><firstname>Jennifer M.</firstname><surname>Hartley</surname><order>3</order></author><author><firstname>Dana L.</firstname><surname>Thompson</surname><order>4</order></author><author><firstname>Sean</firstname><surname>Scott</surname><order>5</order></author><author><firstname>Rowan</firstname><surname>Hanson</surname><orcid>0000-0003-2733-9066</orcid><order>6</order></author><author><firstname>Paul A.</firstname><surname>Anderson</surname><order>7</order></author><author><firstname>Emma</firstname><surname>Kendrick</surname><order>8</order></author><author><firstname>Rob</firstname><surname>Sommerville</surname><order>9</order></author><author><firstname>Karl S.</firstname><surname>Ryder</surname><order>10</order></author><author><firstname>Andrew P.</firstname><surname>Abbott</surname><order>11</order></author></authors><documents><document><filename>57611__20615__c28a4bcb3e0643b2be85f26c548c0522.pdf</filename><originalFilename>57611.pdf</originalFilename><uploaded>2021-08-13T10:03:44.7490368</uploaded><type>Output</type><contentLength>1595947</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-09-08T11:19:31.0825814 v2 57611 2021-08-13 Lithium ion battery recycling using high-intensity ultrasonication 87867d675f1cd66804b1c6c2626cac24 Iain Aldous Iain Aldous true false 7209968799fca54ede29c898ea12db49 0000-0003-2733-9066 Rowan Hanson Rowan Hanson true false 2021-08-13 CHEG Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and efficient recycling protocols. Current methods are based on either hydrometallurgical or pyrometallurgical methods. The development of efficient separation techniques of waste lithium ion batteries into processable waste streams is needed to reduce material loss during recycling. Here we show a rapid and simple method for removing the active material from composite electrodes using high powered ultrasound in a continuous flow process. Cavitation at the electrode interface enables rapid and selective breaking of the adhesive bond, enabling an electrode to be delaminated in a matter of seconds. This enables the amount of material that can be processed in a given time and volume to be increased by a factor of approximately 100. It also produces a material of higher purity and value that can potentially be directly recycled into new electrodes. Journal Article Green Chemistry 23 13 4710 4715 Royal Society of Chemistry (RSC) 1463-9262 1463-9270 10 6 2021 2021-06-10 10.1039/d1gc01623g COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University Other Faraday Institution (grant codes FIRG005 and FIRG006) 2021-09-08T11:19:31.0825814 2021-08-13T10:02:34.2917989 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Chunhong Lei 1 Iain Aldous 2 Jennifer M. Hartley 3 Dana L. Thompson 4 Sean Scott 5 Rowan Hanson 0000-0003-2733-9066 6 Paul A. Anderson 7 Emma Kendrick 8 Rob Sommerville 9 Karl S. Ryder 10 Andrew P. Abbott 11 57611__20615__c28a4bcb3e0643b2be85f26c548c0522.pdf 57611.pdf 2021-08-13T10:03:44.7490368 Output 1595947 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. true eng http://creativecommons.org/licenses/by-nc/3.0/
title Lithium ion battery recycling using high-intensity ultrasonication
spellingShingle Lithium ion battery recycling using high-intensity ultrasonication
Iain Aldous
Rowan Hanson
title_short Lithium ion battery recycling using high-intensity ultrasonication
title_full Lithium ion battery recycling using high-intensity ultrasonication
title_fullStr Lithium ion battery recycling using high-intensity ultrasonication
title_full_unstemmed Lithium ion battery recycling using high-intensity ultrasonication
title_sort Lithium ion battery recycling using high-intensity ultrasonication
author_id_str_mv 87867d675f1cd66804b1c6c2626cac24
7209968799fca54ede29c898ea12db49
author_id_fullname_str_mv 87867d675f1cd66804b1c6c2626cac24_***_Iain Aldous
7209968799fca54ede29c898ea12db49_***_Rowan Hanson
author Iain Aldous
Rowan Hanson
author2 Chunhong Lei
Iain Aldous
Jennifer M. Hartley
Dana L. Thompson
Sean Scott
Rowan Hanson
Paul A. Anderson
Emma Kendrick
Rob Sommerville
Karl S. Ryder
Andrew P. Abbott
format Journal article
container_title Green Chemistry
container_volume 23
container_issue 13
container_start_page 4710
publishDate 2021
institution Swansea University
issn 1463-9262
1463-9270
doi_str_mv 10.1039/d1gc01623g
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and efficient recycling protocols. Current methods are based on either hydrometallurgical or pyrometallurgical methods. The development of efficient separation techniques of waste lithium ion batteries into processable waste streams is needed to reduce material loss during recycling. Here we show a rapid and simple method for removing the active material from composite electrodes using high powered ultrasound in a continuous flow process. Cavitation at the electrode interface enables rapid and selective breaking of the adhesive bond, enabling an electrode to be delaminated in a matter of seconds. This enables the amount of material that can be processed in a given time and volume to be increased by a factor of approximately 100. It also produces a material of higher purity and value that can potentially be directly recycled into new electrodes.
published_date 2021-06-10T04:13:29Z
_version_ 1763753915082342400
score 11.014224