Journal article 809 views 138 downloads
Oxysterols protect bovine endometrial cells against pore‐forming toxins from pathogenic bacteria
The FASEB Journal, Volume: 35, Issue: 10, Pages: 1 - 21
Swansea University Authors: Anthony Horlock , Thomas Ormsby, Sian-eleri Owens , William Griffiths , Yuqin Wang , James Cronin , Martin Sheldon
-
PDF | Version of Record
© 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution License
Download (3.6MB)
DOI (Published version): 10.1096/fj.202100036r
Abstract
Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to...
Published in: | The FASEB Journal |
---|---|
ISSN: | 0892-6638 1530-6860 |
Published: |
Wiley
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57632 |
Abstract: |
Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to bacteria are regulated by the side-chain-hydroxycholesterols 27-hydroxycholesterol and 25-hydroxycholesterol, but their effect on the intrinsic protection of cells against pore-forming toxins is unclear. Here, we tested the hypothesis that 27-hydroxycholesterol and 25-hydroxycholesterol help protect cells against pore-forming toxins. We treated bovine endometrial epithelial and stromal cells with 27-hydroxycholesterol or 25-hydroxycholesterol, and then challenged the cells with pyolysin, which is a cholesterol-dependent cytolysin from Trueperella pyogenes that targets these endometrial cells. We found that treatment with 27-hydroxycholesterol or 25-hydroxycholesterol protected both epithelial and stomal cells against pore formation and the damage caused by pyolysin. The oxysterols limited pyolysin-induced leakage of potassium and lactate dehydrogenase from cells, and reduced cytoskeletal changes and cytolysis. This oxysterol cytoprotection against pyolysin was partially dependent on reducing cytolysin-accessible cholesterol in the cell membrane and on activating liver X receptors. Treatment with 27-hydroxycholesterol also protected the endometrial cells against Staphylococcus aureus α hemolysin. Using mass spectrometry, we found 27-hydroxycholesterol and 25-hydroxycholesterol in uterine and follicular fluid. Furthermore, epithelial cells released additional 25-hydroxycholesterol in response to pyolysin. In conclusion, both 27-hydroxycholesterol and 25-hydroxycholesterol increased the intrinsic protection of bovine endometrial cells against pore-forming toxins. Our findings imply that side-chain-hydroxycholesterols may help defend the endometrium against pathogenic bacteria. |
---|---|
Keywords: |
Cattle, cholesterol, cytoprotection, liver X receptor, uterus |
College: |
Faculty of Medicine, Health and Life Sciences |
Funders: |
This study was supported by Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number R01HD084316. Instrumentation for oxysterol analysis was funded by Biotechnology and Biological Sciences Research Council grants BB/I001735/1 and BB/L001942/1, and the European Union via European Structural Funds as part of the Welsh Government funded Academic Expertise for Business project HE09161003. |
Issue: |
10 |
Start Page: |
1 |
End Page: |
21 |