Journal article 816 views 151 downloads
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0
Information, Volume: 12, Issue: 8, Pages: 304 - 18
Swansea University Authors: Sadeer Beden, Qiushi Cao, Arnold Beckmann
-
PDF | Version of Record
Copyright: © 2021 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Download (6.53MB)
DOI (Published version): 10.3390/info12080304
Abstract
This paper introduces the Steel Cold Rolling Ontology (SCRO) to model and capture domain knowledge of cold rolling processes and activities within a steel plant. A case study is set up that uses real-world cold rolling data sets to validate the performance and functionality of SCRO. This includes us...
Published in: | Information |
---|---|
ISSN: | 2078-2489 |
Published: |
MDPI AG
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57654 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-08-18T22:06:10Z |
---|---|
last_indexed |
2023-01-11T14:37:43Z |
id |
cronfa57654 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-07-05T15:33:58.5237581</datestamp><bib-version>v2</bib-version><id>57654</id><entry>2021-08-18</entry><title>SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0</title><swanseaauthors><author><sid>acf0be82092335f6fb65bb51f29c46ac</sid><firstname>Sadeer</firstname><surname>Beden</surname><name>Sadeer Beden</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5c00afca4cb5fa62e43bda660a1a27b5</sid><firstname>Qiushi</firstname><surname>Cao</surname><name>Qiushi Cao</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-08-18</date><deptcode>SBI</deptcode><abstract>This paper introduces the Steel Cold Rolling Ontology (SCRO) to model and capture domain knowledge of cold rolling processes and activities within a steel plant. A case study is set up that uses real-world cold rolling data sets to validate the performance and functionality of SCRO. This includes using the Ontop framework to deploy virtual knowledge graphs for data access, data integration, data querying, and condition-based maintenance purposes. SCRO is evaluated using OOPS!, the ontology pitfall detection system, and feedback from domain experts from Tata Steel.</abstract><type>Journal Article</type><journal>Information</journal><volume>12</volume><journalNumber>8</journalNumber><paginationStart>304</paginationStart><paginationEnd>18</paginationEnd><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2078-2489</issnElectronic><keywords>Industry 4.0; steelmaking; cold rolling; ontology; Ontop</keywords><publishedDay>29</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-07-29</publishedDate><doi>10.3390/info12080304</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SBI</DepartmentCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>EPSRC. S. Beden was supported by the Engineering and Physical Sciences Research Council (grant number EP/T517537/1) and by Tata Steel. Q. Cao and A. Beckmann (in part) were supported by the Engineering and Physical Sciences Research Council (grant number EPSRC EP/S018107/1).</funders><projectreference>EP/T517537/1, EP/S018107/1</projectreference><lastEdited>2022-07-05T15:33:58.5237581</lastEdited><Created>2021-08-18T22:36:20.2361714</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Sadeer</firstname><surname>Beden</surname><order>1</order></author><author><firstname>Qiushi</firstname><surname>Cao</surname><order>2</order></author><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>3</order></author></authors><documents><document><filename>57654__20955__200563c34ab6447ca6ff5d65dcdf7eed.pdf</filename><originalFilename>57654.pdf</originalFilename><uploaded>2021-09-21T13:39:37.1048456</uploaded><type>Output</type><contentLength>6848770</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: © 2021 by the authors. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-07-05T15:33:58.5237581 v2 57654 2021-08-18 SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 acf0be82092335f6fb65bb51f29c46ac Sadeer Beden Sadeer Beden true false 5c00afca4cb5fa62e43bda660a1a27b5 Qiushi Cao Qiushi Cao true false 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false 2021-08-18 SBI This paper introduces the Steel Cold Rolling Ontology (SCRO) to model and capture domain knowledge of cold rolling processes and activities within a steel plant. A case study is set up that uses real-world cold rolling data sets to validate the performance and functionality of SCRO. This includes using the Ontop framework to deploy virtual knowledge graphs for data access, data integration, data querying, and condition-based maintenance purposes. SCRO is evaluated using OOPS!, the ontology pitfall detection system, and feedback from domain experts from Tata Steel. Journal Article Information 12 8 304 18 MDPI AG 2078-2489 Industry 4.0; steelmaking; cold rolling; ontology; Ontop 29 7 2021 2021-07-29 10.3390/info12080304 COLLEGE NANME Biosciences COLLEGE CODE SBI Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) EPSRC. S. Beden was supported by the Engineering and Physical Sciences Research Council (grant number EP/T517537/1) and by Tata Steel. Q. Cao and A. Beckmann (in part) were supported by the Engineering and Physical Sciences Research Council (grant number EPSRC EP/S018107/1). EP/T517537/1, EP/S018107/1 2022-07-05T15:33:58.5237581 2021-08-18T22:36:20.2361714 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Sadeer Beden 1 Qiushi Cao 2 Arnold Beckmann 0000-0001-7958-5790 3 57654__20955__200563c34ab6447ca6ff5d65dcdf7eed.pdf 57654.pdf 2021-09-21T13:39:37.1048456 Output 6848770 application/pdf Version of Record true Copyright: © 2021 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license true eng https://creativecommons.org/licenses/by/4.0/ |
title |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 |
spellingShingle |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 Sadeer Beden Qiushi Cao Arnold Beckmann |
title_short |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 |
title_full |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 |
title_fullStr |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 |
title_full_unstemmed |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 |
title_sort |
SCRO: A Domain Ontology for Describing Steel Cold Rolling Processes towards Industry 4.0 |
author_id_str_mv |
acf0be82092335f6fb65bb51f29c46ac 5c00afca4cb5fa62e43bda660a1a27b5 1439ebd690110a50a797b7ec78cca600 |
author_id_fullname_str_mv |
acf0be82092335f6fb65bb51f29c46ac_***_Sadeer Beden 5c00afca4cb5fa62e43bda660a1a27b5_***_Qiushi Cao 1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann |
author |
Sadeer Beden Qiushi Cao Arnold Beckmann |
author2 |
Sadeer Beden Qiushi Cao Arnold Beckmann |
format |
Journal article |
container_title |
Information |
container_volume |
12 |
container_issue |
8 |
container_start_page |
304 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2078-2489 |
doi_str_mv |
10.3390/info12080304 |
publisher |
MDPI AG |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
This paper introduces the Steel Cold Rolling Ontology (SCRO) to model and capture domain knowledge of cold rolling processes and activities within a steel plant. A case study is set up that uses real-world cold rolling data sets to validate the performance and functionality of SCRO. This includes using the Ontop framework to deploy virtual knowledge graphs for data access, data integration, data querying, and condition-based maintenance purposes. SCRO is evaluated using OOPS!, the ontology pitfall detection system, and feedback from domain experts from Tata Steel. |
published_date |
2021-07-29T04:13:33Z |
_version_ |
1763753920006455296 |
score |
11.0302305 |