Journal article 740 views 115 downloads
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation
Energy & Environmental Science, Volume: 2021, Issue: 10
Swansea University Authors: Michael Allen, Morgan McKee, Moritz Kuehnel
-
PDF | Version of Record
This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC-BY).
Download (2.84MB)
DOI (Published version): 10.1039/d1ee01822a
Abstract
Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by c...
Published in: | Energy & Environmental Science |
---|---|
ISSN: | 1754-5692 1754-5706 |
Published: |
Royal Society of Chemistry (RSC)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57689 |
first_indexed |
2021-09-21T14:16:01Z |
---|---|
last_indexed |
2021-11-11T04:24:36Z |
id |
cronfa57689 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2021-11-10T10:12:25.2169854</datestamp><bib-version>v2</bib-version><id>57689</id><entry>2021-08-25</entry><title>Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation</title><swanseaauthors><author><sid>740a38eee8038c6cb4a9eb30d147db87</sid><firstname>Michael</firstname><surname>Allen</surname><name>Michael Allen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bfcf92a866f716f543b92d2f8339c7ec</sid><firstname>Morgan</firstname><surname>McKee</surname><name>Morgan McKee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>210dbad181ce095d6f8bf2bd1d616d4e</sid><firstname>Moritz</firstname><surname>Kuehnel</surname><name>Moritz Kuehnel</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-08-25</date><abstract>Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to >34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity.</abstract><type>Journal Article</type><journal>Energy & Environmental Science</journal><volume>2021</volume><journalNumber>10</journalNumber><paginationStart/><paginationEnd/><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1754-5692</issnPrint><issnElectronic>1754-5706</issnElectronic><keywords>Renewable fuels, green hydrogen, solar water splitting</keywords><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-08-31</publishedDate><doi>10.1039/d1ee01822a</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>EPSRC DTA Grant, EPSRC Capital investment grant</funders><projectreference>EP/R51312X/1, EP/S017925/1</projectreference><lastEdited>2021-11-10T10:12:25.2169854</lastEdited><Created>2021-08-25T15:59:23.4707488</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Michael</firstname><surname>Allen</surname><order>1</order></author><author><firstname>Morgan</firstname><surname>McKee</surname><order>2</order></author><author><firstname>Frank</firstname><surname>Marken</surname><order>3</order></author><author><firstname>Moritz</firstname><surname>Kuehnel</surname><order>4</order></author></authors><documents><document><filename>57689__20957__753d45d365e446978d8efe32670fe569.pdf</filename><originalFilename>57689.VOR.pdf</originalFilename><uploaded>2021-09-21T15:14:51.4905463</uploaded><type>Output</type><contentLength>2973507</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs><OutputDur><Id>88</Id><DataControllerName>Allan, Michael G; McKee, Morgan J; Marken, Frank; Kuehnel, Moritz F</DataControllerName><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>https://zenodo.org/record/5236823#.YUnptbhKi70</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807> |
spelling |
2021-11-10T10:12:25.2169854 v2 57689 2021-08-25 Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation 740a38eee8038c6cb4a9eb30d147db87 Michael Allen Michael Allen true false bfcf92a866f716f543b92d2f8339c7ec Morgan McKee Morgan McKee true false 210dbad181ce095d6f8bf2bd1d616d4e Moritz Kuehnel Moritz Kuehnel true false 2021-08-25 Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to >34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity. Journal Article Energy & Environmental Science 2021 10 Royal Society of Chemistry (RSC) 1754-5692 1754-5706 Renewable fuels, green hydrogen, solar water splitting 31 8 2021 2021-08-31 10.1039/d1ee01822a COLLEGE NANME COLLEGE CODE Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) EPSRC DTA Grant, EPSRC Capital investment grant EP/R51312X/1, EP/S017925/1 2021-11-10T10:12:25.2169854 2021-08-25T15:59:23.4707488 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Michael Allen 1 Morgan McKee 2 Frank Marken 3 Moritz Kuehnel 4 57689__20957__753d45d365e446978d8efe32670fe569.pdf 57689.VOR.pdf 2021-09-21T15:14:51.4905463 Output 2973507 application/pdf Version of Record true This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC-BY). true eng http://creativecommons.org/licenses/by/3.0/ 88 Allan, Michael G; McKee, Morgan J; Marken, Frank; Kuehnel, Moritz F true https://zenodo.org/record/5236823#.YUnptbhKi70 false |
title |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation |
spellingShingle |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation Michael Allen Morgan McKee Moritz Kuehnel |
title_short |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation |
title_full |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation |
title_fullStr |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation |
title_full_unstemmed |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation |
title_sort |
Solvent-controlled O2 diffusion enables air-tolerant solar hydrogen generation |
author_id_str_mv |
740a38eee8038c6cb4a9eb30d147db87 bfcf92a866f716f543b92d2f8339c7ec 210dbad181ce095d6f8bf2bd1d616d4e |
author_id_fullname_str_mv |
740a38eee8038c6cb4a9eb30d147db87_***_Michael Allen bfcf92a866f716f543b92d2f8339c7ec_***_Morgan McKee 210dbad181ce095d6f8bf2bd1d616d4e_***_Moritz Kuehnel |
author |
Michael Allen Morgan McKee Moritz Kuehnel |
author2 |
Michael Allen Morgan McKee Frank Marken Moritz Kuehnel |
format |
Journal article |
container_title |
Energy & Environmental Science |
container_volume |
2021 |
container_issue |
10 |
publishDate |
2021 |
institution |
Swansea University |
issn |
1754-5692 1754-5706 |
doi_str_mv |
10.1039/d1ee01822a |
publisher |
Royal Society of Chemistry (RSC) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry |
document_store_str |
1 |
active_str |
0 |
description |
Solar water splitting into H2and O2is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to >34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity. |
published_date |
2021-08-31T08:08:12Z |
_version_ |
1821935710169464832 |
score |
11.048064 |