Journal article 631 views 181 downloads
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients
Stochastic Analysis and Applications, Volume: 39, Issue: 2, Pages: 278 - 305
Swansea University Authors: Yongqiang SUO, Chenggui Yuan
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution-NonCommercial 4.0 International License
Download (319.13KB)
DOI (Published version): 10.1080/07362994.2020.1796706
Abstract
In this paper, we investigate weak existence and uniqueness of solutions and weak convergence of Euler-Maruyama scheme to stochastic functional differential equations with H\"older continuous drift driven by fractional Brownian motion with Hurst index $H\in (1/2,1)$. The methods used in this pa...
Published in: | Stochastic Analysis and Applications |
---|---|
ISSN: | 0736-2994 1532-9356 |
Published: |
Informa UK Limited
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57825 |
first_indexed |
2021-10-04T14:13:17Z |
---|---|
last_indexed |
2021-10-05T03:23:05Z |
id |
cronfa57825 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-10-04T15:13:25.8679752</datestamp><bib-version>v2</bib-version><id>57825</id><entry>2021-09-09</entry><title>Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients</title><swanseaauthors><author><sid>c74223802c4c5dabd8da88041356e413</sid><firstname>Yongqiang</firstname><surname>SUO</surname><name>Yongqiang SUO</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b571d1cba717a58e526805bd9abea0</sid><ORCID>0000-0003-0486-5450</ORCID><firstname>Chenggui</firstname><surname>Yuan</surname><name>Chenggui Yuan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-09</date><deptcode>MACS</deptcode><abstract>In this paper, we investigate weak existence and uniqueness of solutions and weak convergence of Euler-Maruyama scheme to stochastic functional differential equations with H\"older continuous drift driven by fractional Brownian motion with Hurst index $H\in (1/2,1)$. The methods used in this paper are Girsanov's transformation and the property of the corresponding reference stochastic differential equations.</abstract><type>Journal Article</type><journal>Stochastic Analysis and Applications</journal><volume>39</volume><journalNumber>2</journalNumber><paginationStart>278</paginationStart><paginationEnd>305</paginationEnd><publisher>Informa UK Limited</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0736-2994</issnPrint><issnElectronic>1532-9356</issnElectronic><keywords>Weak solution; weak convergence; Hölder continuity drift; fractional Brownian motion</keywords><publishedDay>4</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-03-04</publishedDate><doi>10.1080/07362994.2020.1796706</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-10-04T15:13:25.8679752</lastEdited><Created>2021-09-09T08:46:35.2412574</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Yongqiang</firstname><surname>SUO</surname><order>1</order></author><author><firstname>Chenggui</firstname><surname>Yuan</surname><orcid>0000-0003-0486-5450</orcid><order>2</order></author><author><firstname>Shao-Qin</firstname><surname>Zhang</surname><order>3</order></author></authors><documents><document><filename>57825__20799__a5e69989cb8546d28f2fa36fe2a3851c.pdf</filename><originalFilename>LSAA-RIS.pdf</originalFilename><uploaded>2021-09-09T08:50:06.0341511</uploaded><type>Output</type><contentLength>326789</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-07-25T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution-NonCommercial 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-10-04T15:13:25.8679752 v2 57825 2021-09-09 Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients c74223802c4c5dabd8da88041356e413 Yongqiang SUO Yongqiang SUO true false 22b571d1cba717a58e526805bd9abea0 0000-0003-0486-5450 Chenggui Yuan Chenggui Yuan true false 2021-09-09 MACS In this paper, we investigate weak existence and uniqueness of solutions and weak convergence of Euler-Maruyama scheme to stochastic functional differential equations with H\"older continuous drift driven by fractional Brownian motion with Hurst index $H\in (1/2,1)$. The methods used in this paper are Girsanov's transformation and the property of the corresponding reference stochastic differential equations. Journal Article Stochastic Analysis and Applications 39 2 278 305 Informa UK Limited 0736-2994 1532-9356 Weak solution; weak convergence; Hölder continuity drift; fractional Brownian motion 4 3 2021 2021-03-04 10.1080/07362994.2020.1796706 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-10-04T15:13:25.8679752 2021-09-09T08:46:35.2412574 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Yongqiang SUO 1 Chenggui Yuan 0000-0003-0486-5450 2 Shao-Qin Zhang 3 57825__20799__a5e69989cb8546d28f2fa36fe2a3851c.pdf LSAA-RIS.pdf 2021-09-09T08:50:06.0341511 Output 326789 application/pdf Accepted Manuscript true 2021-07-25T00:00:00.0000000 Released under the terms of a Creative Commons Attribution-NonCommercial 4.0 International License true eng https://creativecommons.org/licenses/by-nc/4.0/ |
title |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients |
spellingShingle |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients Yongqiang SUO Chenggui Yuan |
title_short |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients |
title_full |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients |
title_fullStr |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients |
title_full_unstemmed |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients |
title_sort |
Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients |
author_id_str_mv |
c74223802c4c5dabd8da88041356e413 22b571d1cba717a58e526805bd9abea0 |
author_id_fullname_str_mv |
c74223802c4c5dabd8da88041356e413_***_Yongqiang SUO 22b571d1cba717a58e526805bd9abea0_***_Chenggui Yuan |
author |
Yongqiang SUO Chenggui Yuan |
author2 |
Yongqiang SUO Chenggui Yuan Shao-Qin Zhang |
format |
Journal article |
container_title |
Stochastic Analysis and Applications |
container_volume |
39 |
container_issue |
2 |
container_start_page |
278 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0736-2994 1532-9356 |
doi_str_mv |
10.1080/07362994.2020.1796706 |
publisher |
Informa UK Limited |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we investigate weak existence and uniqueness of solutions and weak convergence of Euler-Maruyama scheme to stochastic functional differential equations with H\"older continuous drift driven by fractional Brownian motion with Hurst index $H\in (1/2,1)$. The methods used in this paper are Girsanov's transformation and the property of the corresponding reference stochastic differential equations. |
published_date |
2021-03-04T05:05:54Z |
_version_ |
1821290061321207808 |
score |
11.390808 |