No Cover Image

Journal article 653 views 284 downloads

Modeling the effect of flow-induced mechanical erosion during coffee filtration

Chaojie Mo, Richard Johnston Orcid Logo, Luciano Navarini, Marco Ellero

Physics of Fluids, Volume: 33, Issue: 9, Start page: 093101

Swansea University Authors: Richard Johnston Orcid Logo, Marco Ellero

Check full text

DOI (Published version): 10.1063/5.0059707

Abstract

The espresso extraction process involves a complex transport inside a geometry-changing porous medium. Large solid grains forming the majority of the porous medium can migrate, swell, and consolidate, and they can also morphologically change during flow, i.e., being mechanically eroded by hydrodynam...

Full description

Published in: Physics of Fluids
ISSN: 1070-6631 1089-7666
Published: AIP Publishing 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57912
Abstract: The espresso extraction process involves a complex transport inside a geometry-changing porous medium. Large solid grains forming the majority of the porous medium can migrate, swell, and consolidate, and they can also morphologically change during flow, i.e., being mechanically eroded by hydrodynamic forces. These processes can, in turn, have a significant back-effect on the flow and the related coffee extraction profiles. In this article, we devise a bottom–up erosion model in the framework of smoothed dissipative particle dynamics to consider flow-induced morphological changes of the coffee grains. We assume that the coffee grains are not completely wetted and remain brittle. We found that heterogeneity in both the filtration direction and the transverse direction can be induced. The former is controlled by the angle of internal friction while the latter is controlled by both the cohesion parameter and the angle of internal friction. Not restricted to the modeling of espresso extraction, our model can also be applied to other eroding porous media. Our results suggest that, under ideal porous flow conditions, we can control the heterogeneity (in both the pressure drop direction and the transverse direction) of an eroding medium by tuning the yield characteristics of the eroding material.
College: Faculty of Science and Engineering
Issue: 9
Start Page: 093101