Book chapter 883 views
On the Computational Content of Choice Principles
Handbook of Constructive Mathematics, Pages: 806 - 825
Swansea University Authors: Ulrich Berger , Monika Seisenberger
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1017/9781009039888.030
Abstract
We discuss the computational content of various choice principles and theorems using them. As a case study, we describe the computational content of Nash-Williams' proof of Higman's Lemma, which uses the axiom of countable choice in combination with classical logic. Our formal system for t...
Published in: | Handbook of Constructive Mathematics |
---|---|
ISBN: | 9781316510865 9781009039888 |
Published: |
Cambridge University Press
2023
|
Online Access: |
http://dx.doi.org/10.1017/9781009039888.030 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa57994 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-09-21T08:24:00Z |
---|---|
last_indexed |
2023-01-11T14:38:16Z |
id |
cronfa57994 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>57994</id><entry>2021-09-20</entry><title>On the Computational Content of Choice Principles</title><swanseaauthors><author><sid>61199ae25042a5e629c5398c4a40a4f5</sid><ORCID>0000-0002-7677-3582</ORCID><firstname>Ulrich</firstname><surname>Berger</surname><name>Ulrich Berger</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d035399b2b324a63fe472ce0344653e0</sid><ORCID>0000-0002-2226-386X</ORCID><firstname>Monika</firstname><surname>Seisenberger</surname><name>Monika Seisenberger</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-20</date><deptcode>SCS</deptcode><abstract>We discuss the computational content of various choice principles and theorems using them. As a case study, we describe the computational content of Nash-Williams' proof of Higman's Lemma, which uses the axiom of countable choice in combination with classical logic. Our formal system for the extraction of computational content from proofs is a realizability interpretation of an intuitionistic theory of inductive and coinductive definitions as implemented in the Minlog system.</abstract><type>Book chapter</type><journal>Handbook of Constructive Mathematics</journal><volume/><journalNumber/><paginationStart>806</paginationStart><paginationEnd>825</paginationEnd><publisher>Cambridge University Press</publisher><placeOfPublication/><isbnPrint>9781316510865</isbnPrint><isbnElectronic>9781009039888</isbnElectronic><issnPrint/><issnElectronic/><keywords/><publishedDay>30</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-04-30</publishedDate><doi>10.1017/9781009039888.030</doi><url>http://dx.doi.org/10.1017/9781009039888.030</url><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-02-09T13:02:18.2866771</lastEdited><Created>2021-09-20T22:06:43.1553328</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ulrich</firstname><surname>Berger</surname><orcid>0000-0002-7677-3582</orcid><order>1</order></author><author><firstname>Monika</firstname><surname>Seisenberger</surname><orcid>0000-0002-2226-386X</orcid><order>2</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
v2 57994 2021-09-20 On the Computational Content of Choice Principles 61199ae25042a5e629c5398c4a40a4f5 0000-0002-7677-3582 Ulrich Berger Ulrich Berger true false d035399b2b324a63fe472ce0344653e0 0000-0002-2226-386X Monika Seisenberger Monika Seisenberger true false 2021-09-20 SCS We discuss the computational content of various choice principles and theorems using them. As a case study, we describe the computational content of Nash-Williams' proof of Higman's Lemma, which uses the axiom of countable choice in combination with classical logic. Our formal system for the extraction of computational content from proofs is a realizability interpretation of an intuitionistic theory of inductive and coinductive definitions as implemented in the Minlog system. Book chapter Handbook of Constructive Mathematics 806 825 Cambridge University Press 9781316510865 9781009039888 30 4 2023 2023-04-30 10.1017/9781009039888.030 http://dx.doi.org/10.1017/9781009039888.030 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2024-02-09T13:02:18.2866771 2021-09-20T22:06:43.1553328 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ulrich Berger 0000-0002-7677-3582 1 Monika Seisenberger 0000-0002-2226-386X 2 |
title |
On the Computational Content of Choice Principles |
spellingShingle |
On the Computational Content of Choice Principles Ulrich Berger Monika Seisenberger |
title_short |
On the Computational Content of Choice Principles |
title_full |
On the Computational Content of Choice Principles |
title_fullStr |
On the Computational Content of Choice Principles |
title_full_unstemmed |
On the Computational Content of Choice Principles |
title_sort |
On the Computational Content of Choice Principles |
author_id_str_mv |
61199ae25042a5e629c5398c4a40a4f5 d035399b2b324a63fe472ce0344653e0 |
author_id_fullname_str_mv |
61199ae25042a5e629c5398c4a40a4f5_***_Ulrich Berger d035399b2b324a63fe472ce0344653e0_***_Monika Seisenberger |
author |
Ulrich Berger Monika Seisenberger |
author2 |
Ulrich Berger Monika Seisenberger |
format |
Book chapter |
container_title |
Handbook of Constructive Mathematics |
container_start_page |
806 |
publishDate |
2023 |
institution |
Swansea University |
isbn |
9781316510865 9781009039888 |
doi_str_mv |
10.1017/9781009039888.030 |
publisher |
Cambridge University Press |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://dx.doi.org/10.1017/9781009039888.030 |
document_store_str |
0 |
active_str |
0 |
description |
We discuss the computational content of various choice principles and theorems using them. As a case study, we describe the computational content of Nash-Williams' proof of Higman's Lemma, which uses the axiom of countable choice in combination with classical logic. Our formal system for the extraction of computational content from proofs is a realizability interpretation of an intuitionistic theory of inductive and coinductive definitions as implemented in the Minlog system. |
published_date |
2023-04-30T13:02:17Z |
_version_ |
1790426468065476608 |
score |
11.035634 |