No Cover Image

Journal article 35 views 33 downloads

Simulating Fractures with Bonded Discrete Element Method

Jia-Ming Lu, Chenfeng Li Orcid Logo, Geng-Chen Cao, Shi-Min Hu

IEEE Transactions on Visualization and Computer Graphics, Pages: 1 - 1

Swansea University Author: Chenfeng Li Orcid Logo

Abstract

Along with motion and deformation, fracture is a fundamental behaviour for solid materials, playing a critical role in physically-based animation. Many simulation methods including both continuum and discrete approaches have been used by the graphics community to animate fractures for various materi...

Full description

Published in: IEEE Transactions on Visualization and Computer Graphics
ISSN: 1077-2626 1941-0506
Published: Institute of Electrical and Electronics Engineers (IEEE) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58105
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Along with motion and deformation, fracture is a fundamental behaviour for solid materials, playing a critical role in physically-based animation. Many simulation methods including both continuum and discrete approaches have been used by the graphics community to animate fractures for various materials. However, compared with motion and deformation, fracture remains a challenging task for simulation, because the material's geometry, topology and mechanical states all undergo continuous (and sometimes chaotic) changes as fragmentation develops. Recognizing the discontinuous nature of fragmentation, we propose a discrete approach, namely the Bonded Discrete Element Method (BDEM), for fracture simulation. The research of BDEM in engineering has been growing rapidly in recent years, while its potential in graphics has not been explored. We also introduce several novel changes to BDEM to make it more suitable for animation design. Compared with other fracture simulation methods, the BDEM has some attractive benefits, e.g. efficient handling of multiple fractures, simple formulation and implementation, and good scaling consistency. But it also has some critical weaknesses, e.g. high computational cost, which demand further research. A number of examples are presented to demonstrate the pros and cons, which are then highlighted in the conclusion and discussion.
College: College of Engineering
Start Page: 1
End Page: 1