Conference Paper/Proceeding/Abstract 208 views 14 downloads
The logical strength of Büchi's decidability theorem
25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Volume: 62, Pages: 36:1 - 36:16
Swansea University Author:
Cécilia Pradic
-
PDF | Version of Record
© Leszek Kołodziejczyk, Henryk Michalewski, Pierre Pradic, and Michał Skrzypczak; licensed under Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
Download (574.33KB)
DOI (Published version): 10.4230/LIPIcs.CSL.2016.36
Abstract
We study the strength of axioms needed to prove various results related to automata on infinite words and Büchi's theorem on the decidability of the MSO theory of (N, less_or_equal). We prove that the following are equivalent over the weak second-order arithmetic theory RCA: 1. Büchi's com...
Published in: | 25th EACSL Annual Conference on Computer Science Logic (CSL 2016) |
---|---|
ISBN: | 978-3-95977-022-4 |
ISSN: | 1868-8969 |
Published: |
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58112 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-10-25T09:26:51Z |
---|---|
last_indexed |
2021-10-26T03:24:17Z |
id |
cronfa58112 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-10-25T11:26:31.1149294</datestamp><bib-version>v2</bib-version><id>58112</id><entry>2021-09-27</entry><title>The logical strength of Büchi's decidability theorem</title><swanseaauthors><author><sid>3b6e9ebd791c875dac266b3b0b358a58</sid><ORCID>0000-0002-1600-8846</ORCID><firstname>Cécilia</firstname><surname>Pradic</surname><name>Cécilia Pradic</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-27</date><deptcode>SCS</deptcode><abstract>We study the strength of axioms needed to prove various results related to automata on infinite words and Büchi's theorem on the decidability of the MSO theory of (N, less_or_equal). We prove that the following are equivalent over the weak second-order arithmetic theory RCA: 1. Büchi's complementation theorem for nondeterministic automata on infinite words, 2. the decidability of the depth-n fragment of the MSO theory of (N, less_or_equal), for each n greater than 5, 3. the induction scheme for Sigma^0_2 formulae of arithmetic. Moreover, each of (1)-(3) is equivalent to the additive version of Ramsey's Theorem for pairs, often used in proofs of (1); each of (1)-(3) implies McNaughton's determinisation theorem for automata on infinite words; and each of (1)-(3) implies the "bounded-width" version of König's Lemma, often used in proofs of McNaughton's theorem.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>25th EACSL Annual Conference on Computer Science Logic (CSL 2016)</journal><volume>62</volume><journalNumber/><paginationStart>36:1</paginationStart><paginationEnd>36:16</paginationEnd><publisher>Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik</publisher><placeOfPublication/><isbnPrint/><isbnElectronic>978-3-95977-022-4</isbnElectronic><issnPrint/><issnElectronic>1868-8969</issnElectronic><keywords/><publishedDay>25</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-08-25</publishedDate><doi>10.4230/LIPIcs.CSL.2016.36</doi><url>http://drops.dagstuhl.de/opus/volltexte/2016/6576</url><notes>http://drops.dagstuhl.de/opus/volltexte/2016/6576</notes><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-10-25T11:26:31.1149294</lastEdited><Created>2021-09-27T22:52:27.6150757</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Leszek Aleksander</firstname><surname>Kolodziejczyk</surname><order>1</order></author><author><firstname>Henryk</firstname><surname>Michalewski</surname><order>2</order></author><author><firstname>Cécilia</firstname><surname>Pradic</surname><orcid>0000-0002-1600-8846</orcid><order>3</order></author><author><firstname>Michał</firstname><surname>Skrzypczak</surname><order>4</order></author></authors><documents><document><filename>58112__21287__32db592f044540d3a9d874c393b0eda9.pdf</filename><originalFilename>58112.pdf</originalFilename><uploaded>2021-10-25T10:27:14.0702520</uploaded><type>Output</type><contentLength>588109</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© Leszek Kołodziejczyk, Henryk Michalewski, Pierre Pradic, and Michał Skrzypczak;
licensed under Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/3.0/legalcode</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-10-25T11:26:31.1149294 v2 58112 2021-09-27 The logical strength of Büchi's decidability theorem 3b6e9ebd791c875dac266b3b0b358a58 0000-0002-1600-8846 Cécilia Pradic Cécilia Pradic true false 2021-09-27 SCS We study the strength of axioms needed to prove various results related to automata on infinite words and Büchi's theorem on the decidability of the MSO theory of (N, less_or_equal). We prove that the following are equivalent over the weak second-order arithmetic theory RCA: 1. Büchi's complementation theorem for nondeterministic automata on infinite words, 2. the decidability of the depth-n fragment of the MSO theory of (N, less_or_equal), for each n greater than 5, 3. the induction scheme for Sigma^0_2 formulae of arithmetic. Moreover, each of (1)-(3) is equivalent to the additive version of Ramsey's Theorem for pairs, often used in proofs of (1); each of (1)-(3) implies McNaughton's determinisation theorem for automata on infinite words; and each of (1)-(3) implies the "bounded-width" version of König's Lemma, often used in proofs of McNaughton's theorem. Conference Paper/Proceeding/Abstract 25th EACSL Annual Conference on Computer Science Logic (CSL 2016) 62 36:1 36:16 Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik 978-3-95977-022-4 1868-8969 25 8 2016 2016-08-25 10.4230/LIPIcs.CSL.2016.36 http://drops.dagstuhl.de/opus/volltexte/2016/6576 http://drops.dagstuhl.de/opus/volltexte/2016/6576 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2021-10-25T11:26:31.1149294 2021-09-27T22:52:27.6150757 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Leszek Aleksander Kolodziejczyk 1 Henryk Michalewski 2 Cécilia Pradic 0000-0002-1600-8846 3 Michał Skrzypczak 4 58112__21287__32db592f044540d3a9d874c393b0eda9.pdf 58112.pdf 2021-10-25T10:27:14.0702520 Output 588109 application/pdf Version of Record true © Leszek Kołodziejczyk, Henryk Michalewski, Pierre Pradic, and Michał Skrzypczak; licensed under Creative Commons Attribution 3.0 Unported license (CC-BY 3.0) true eng https://creativecommons.org/licenses/by/3.0/legalcode |
title |
The logical strength of Büchi's decidability theorem |
spellingShingle |
The logical strength of Büchi's decidability theorem Cécilia Pradic |
title_short |
The logical strength of Büchi's decidability theorem |
title_full |
The logical strength of Büchi's decidability theorem |
title_fullStr |
The logical strength of Büchi's decidability theorem |
title_full_unstemmed |
The logical strength of Büchi's decidability theorem |
title_sort |
The logical strength of Büchi's decidability theorem |
author_id_str_mv |
3b6e9ebd791c875dac266b3b0b358a58 |
author_id_fullname_str_mv |
3b6e9ebd791c875dac266b3b0b358a58_***_Cécilia Pradic |
author |
Cécilia Pradic |
author2 |
Leszek Aleksander Kolodziejczyk Henryk Michalewski Cécilia Pradic Michał Skrzypczak |
format |
Conference Paper/Proceeding/Abstract |
container_title |
25th EACSL Annual Conference on Computer Science Logic (CSL 2016) |
container_volume |
62 |
container_start_page |
36:1 |
publishDate |
2016 |
institution |
Swansea University |
isbn |
978-3-95977-022-4 |
issn |
1868-8969 |
doi_str_mv |
10.4230/LIPIcs.CSL.2016.36 |
publisher |
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://drops.dagstuhl.de/opus/volltexte/2016/6576 |
document_store_str |
1 |
active_str |
0 |
description |
We study the strength of axioms needed to prove various results related to automata on infinite words and Büchi's theorem on the decidability of the MSO theory of (N, less_or_equal). We prove that the following are equivalent over the weak second-order arithmetic theory RCA: 1. Büchi's complementation theorem for nondeterministic automata on infinite words, 2. the decidability of the depth-n fragment of the MSO theory of (N, less_or_equal), for each n greater than 5, 3. the induction scheme for Sigma^0_2 formulae of arithmetic. Moreover, each of (1)-(3) is equivalent to the additive version of Ramsey's Theorem for pairs, often used in proofs of (1); each of (1)-(3) implies McNaughton's determinisation theorem for automata on infinite words; and each of (1)-(3) implies the "bounded-width" version of König's Lemma, often used in proofs of McNaughton's theorem. |
published_date |
2016-08-25T04:14:22Z |
_version_ |
1763753971290210304 |
score |
10.952468 |