No Cover Image

Journal article 509 views 61 downloads

Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller-Based Variable Perturbation Size Real-Time Adaptive Perturb and Observe (P&O) MPPT Algorithm for PV Systems

Cagfer Yanarates, Yidong Wang, Zhongfu Zhou Orcid Logo

IEEE Access, Volume: 9, Pages: 138468 - 138482

Swansea University Author: Zhongfu Zhou Orcid Logo

  • 58377.pdf

    PDF | Version of Record

    This work is licensed under a Creative Commons Attribution 4.0 License

    Download (3.68MB)

Abstract

In this paper, Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller based variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm is presented. The proposed control scheme resolved the drawbacks of the conventi...

Full description

Published in: IEEE Access
ISSN: 2169-3536
Published: Institute of Electrical and Electronics Engineers (IEEE) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58377
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In this paper, Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller based variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm is presented. The proposed control scheme resolved the drawbacks of the conventional P&O MPPT method associated with the use of constant perturbation size that leads to poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update the best-estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in the P&O algorithm that characterizes the overall system learning-based real-time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcomes the challenges namely, complexity, computational burden, implantation cost, and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The proposed control scheme is verified using MATLAB/Simulink by applying comparative analysis with PI-controlled conventional P&O MPPT algorithm. Moreover, the performance of the proposed control scheme is validated experimentally with the implementation of MATLAB/Simulink/Stateflow on dSPACE Real-time-interface (RTI) 1007 processor board, DS2004 A/D, and CP4002 Digital I/O boards. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.
College: Faculty of Science and Engineering
Start Page: 138468
End Page: 138482