Journal article 756 views 211 downloads
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs
Acta Applicandae Mathematicae, Volume: 175, Issue: 1, Start page: 16
Swansea University Authors: YONGQIANG SUO, Chenggui Yuan
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License
Download (1.09MB)
DOI (Published version): 10.1007/s10440-021-00444-z
Abstract
Abstract: Under a Lipschitz condition on distribution dependent coefficients, the central limit theorem and the moderate deviation principle are obtained for solutions of McKean-Vlasov type stochastic differential equations, which generalize the corresponding results for classical stochastic differe...
Published in: | Acta Applicandae Mathematicae |
---|---|
ISSN: | 0167-8019 1572-9036 |
Published: |
Springer Science and Business Media LLC
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58388 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-10-18T14:24:10Z |
---|---|
last_indexed |
2022-01-11T04:28:17Z |
id |
cronfa58388 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-01-10T15:38:42.1780284</datestamp><bib-version>v2</bib-version><id>58388</id><entry>2021-10-18</entry><title>Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs</title><swanseaauthors><author><sid>9f5e288c171f1e0f01062b8a5a9007af</sid><firstname>YONGQIANG</firstname><surname>SUO</surname><name>YONGQIANG SUO</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b571d1cba717a58e526805bd9abea0</sid><ORCID>0000-0003-0486-5450</ORCID><firstname>Chenggui</firstname><surname>Yuan</surname><name>Chenggui Yuan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-18</date><abstract>Abstract: Under a Lipschitz condition on distribution dependent coefficients, the central limit theorem and the moderate deviation principle are obtained for solutions of McKean-Vlasov type stochastic differential equations, which generalize the corresponding results for classical stochastic differential equations to the distribution dependent setting.</abstract><type>Journal Article</type><journal>Acta Applicandae Mathematicae</journal><volume>175</volume><journalNumber>1</journalNumber><paginationStart>16</paginationStart><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0167-8019</issnPrint><issnElectronic>1572-9036</issnElectronic><keywords>McKean-Vlasov SDEs; Central limit theorem; Moderate deviation principle; Weak convergence method; Exponential approximation</keywords><publishedDay>15</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-15</publishedDate><doi>10.1007/s10440-021-00444-z</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><lastEdited>2022-01-10T15:38:42.1780284</lastEdited><Created>2021-10-18T15:17:45.7172299</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>YONGQIANG</firstname><surname>SUO</surname><order>1</order></author><author><firstname>Chenggui</firstname><surname>Yuan</surname><orcid>0000-0003-0486-5450</orcid><order>2</order></author></authors><documents><document><filename>58388__21210__f58b37d6148d4376b468f3f13da198c0.pdf</filename><originalFilename>Suo-Yuan2021_Article_CentralLimitTheoremAndModerate.pdf</originalFilename><uploaded>2021-10-18T15:23:18.8877678</uploaded><type>Output</type><contentLength>1141712</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-01-10T15:38:42.1780284 v2 58388 2021-10-18 Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs 9f5e288c171f1e0f01062b8a5a9007af YONGQIANG SUO YONGQIANG SUO true false 22b571d1cba717a58e526805bd9abea0 0000-0003-0486-5450 Chenggui Yuan Chenggui Yuan true false 2021-10-18 Abstract: Under a Lipschitz condition on distribution dependent coefficients, the central limit theorem and the moderate deviation principle are obtained for solutions of McKean-Vlasov type stochastic differential equations, which generalize the corresponding results for classical stochastic differential equations to the distribution dependent setting. Journal Article Acta Applicandae Mathematicae 175 1 16 Springer Science and Business Media LLC 0167-8019 1572-9036 McKean-Vlasov SDEs; Central limit theorem; Moderate deviation principle; Weak convergence method; Exponential approximation 15 10 2021 2021-10-15 10.1007/s10440-021-00444-z COLLEGE NANME COLLEGE CODE Swansea University SU Library paid the OA fee (TA Institutional Deal) 2022-01-10T15:38:42.1780284 2021-10-18T15:17:45.7172299 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics YONGQIANG SUO 1 Chenggui Yuan 0000-0003-0486-5450 2 58388__21210__f58b37d6148d4376b468f3f13da198c0.pdf Suo-Yuan2021_Article_CentralLimitTheoremAndModerate.pdf 2021-10-18T15:23:18.8877678 Output 1141712 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs |
spellingShingle |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs YONGQIANG SUO Chenggui Yuan |
title_short |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs |
title_full |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs |
title_fullStr |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs |
title_full_unstemmed |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs |
title_sort |
Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs |
author_id_str_mv |
9f5e288c171f1e0f01062b8a5a9007af 22b571d1cba717a58e526805bd9abea0 |
author_id_fullname_str_mv |
9f5e288c171f1e0f01062b8a5a9007af_***_YONGQIANG SUO 22b571d1cba717a58e526805bd9abea0_***_Chenggui Yuan |
author |
YONGQIANG SUO Chenggui Yuan |
author2 |
YONGQIANG SUO Chenggui Yuan |
format |
Journal article |
container_title |
Acta Applicandae Mathematicae |
container_volume |
175 |
container_issue |
1 |
container_start_page |
16 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0167-8019 1572-9036 |
doi_str_mv |
10.1007/s10440-021-00444-z |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
Abstract: Under a Lipschitz condition on distribution dependent coefficients, the central limit theorem and the moderate deviation principle are obtained for solutions of McKean-Vlasov type stochastic differential equations, which generalize the corresponding results for classical stochastic differential equations to the distribution dependent setting. |
published_date |
2021-10-15T04:14:53Z |
_version_ |
1763754003171115008 |
score |
11.03559 |