No Cover Image

Journal article 373 views 68 downloads

Divergent abiotic spectral pathways unravel pathogen stress signals across species

P. J. Zarco-Tejada, T. Poblete, C. Camino, V. Gonzalez-Dugo, R. Calderon, Alberto Hornero, Rocio Hernandez-Clemente, M. Román-Écija, M. P. Velasco-Amo, B. B. Landa, P. S. A. Beck, M. Saponari, D. Boscia, J. A. Navas-Cortes

Nature Communications, Volume: 12, Issue: 1, Start page: 6088

Swansea University Authors: Alberto Hornero, Rocio Hernandez-Clemente

  • 58435.pdf

    PDF | Version of Record

    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (1.99MB)

Abstract

Abstract: Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. Spectral scr...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58435
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-10-20T12:29:13Z
last_indexed 2021-11-18T04:28:00Z
id cronfa58435
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-11-17T16:35:27.6892253</datestamp><bib-version>v2</bib-version><id>58435</id><entry>2021-10-20</entry><title>Divergent abiotic spectral pathways unravel pathogen stress signals across species</title><swanseaauthors><author><sid>3140d9cb2dde2c093d42d5bf3b85d05e</sid><firstname>Alberto</firstname><surname>Hornero</surname><name>Alberto Hornero</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0b007e63ef097cd47d6bc60b58379103</sid><firstname>Rocio</firstname><surname>Hernandez-Clemente</surname><name>Rocio Hernandez-Clemente</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-20</date><deptcode>FGSEN</deptcode><abstract>Abstract: Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world&#x2019;s most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic&#x2013;abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>12</volume><journalNumber>1</journalNumber><paginationStart>6088</paginationStart><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>19</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-19</publishedDate><doi>10.1038/s41467-021-26335-3</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>The study was partially funded by the European Union&#x2019;s Horizon 2020 Research and Innovation Programme through grant agreements POnTE (635646) and XFACTORS (727987), as well as by projects AGL2009-13105 from the Spanish Ministry of Education and Science, P08-AGR-03528 from the Regional Government of Andalusia and the European Social Fund, project E-RTA2017-00004-02 from &#x2018;Programa Estatal de I + D + I Orientada a los Retos de la Sociedad&#x2019; of Spain and FEDER, Intramural Project 201840E111 from CSIC, and Project ITS2017-095 Consejeria de Medio Ambiente, Agricultura y Pesca de las Islas Baleares, Spain.</funders><lastEdited>2021-11-17T16:35:27.6892253</lastEdited><Created>2021-10-20T13:25:40.3252334</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Geography</level></path><authors><author><firstname>P. J.</firstname><surname>Zarco-Tejada</surname><order>1</order></author><author><firstname>T.</firstname><surname>Poblete</surname><order>2</order></author><author><firstname>C.</firstname><surname>Camino</surname><order>3</order></author><author><firstname>V.</firstname><surname>Gonzalez-Dugo</surname><order>4</order></author><author><firstname>R.</firstname><surname>Calderon</surname><order>5</order></author><author><firstname>Alberto</firstname><surname>Hornero</surname><order>6</order></author><author><firstname>Rocio</firstname><surname>Hernandez-Clemente</surname><order>7</order></author><author><firstname>M.</firstname><surname>Rom&#xE1;n-&#xC9;cija</surname><order>8</order></author><author><firstname>M. P.</firstname><surname>Velasco-Amo</surname><order>9</order></author><author><firstname>B. B.</firstname><surname>Landa</surname><order>10</order></author><author><firstname>P. S. A.</firstname><surname>Beck</surname><order>11</order></author><author><firstname>M.</firstname><surname>Saponari</surname><order>12</order></author><author><firstname>D.</firstname><surname>Boscia</surname><order>13</order></author><author><firstname>J. A.</firstname><surname>Navas-Cortes</surname><order>14</order></author></authors><documents><document><filename>58435__21242__6e3a74317daf41f3898af1dd3cb45c7d.pdf</filename><originalFilename>58435.pdf</originalFilename><uploaded>2021-10-20T13:28:30.9783419</uploaded><type>Output</type><contentLength>2088890</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-11-17T16:35:27.6892253 v2 58435 2021-10-20 Divergent abiotic spectral pathways unravel pathogen stress signals across species 3140d9cb2dde2c093d42d5bf3b85d05e Alberto Hornero Alberto Hornero true false 0b007e63ef097cd47d6bc60b58379103 Rocio Hernandez-Clemente Rocio Hernandez-Clemente true false 2021-10-20 FGSEN Abstract: Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic–abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide. Journal Article Nature Communications 12 1 6088 Springer Science and Business Media LLC 2041-1723 19 10 2021 2021-10-19 10.1038/s41467-021-26335-3 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University The study was partially funded by the European Union’s Horizon 2020 Research and Innovation Programme through grant agreements POnTE (635646) and XFACTORS (727987), as well as by projects AGL2009-13105 from the Spanish Ministry of Education and Science, P08-AGR-03528 from the Regional Government of Andalusia and the European Social Fund, project E-RTA2017-00004-02 from ‘Programa Estatal de I + D + I Orientada a los Retos de la Sociedad’ of Spain and FEDER, Intramural Project 201840E111 from CSIC, and Project ITS2017-095 Consejeria de Medio Ambiente, Agricultura y Pesca de las Islas Baleares, Spain. 2021-11-17T16:35:27.6892253 2021-10-20T13:25:40.3252334 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Geography P. J. Zarco-Tejada 1 T. Poblete 2 C. Camino 3 V. Gonzalez-Dugo 4 R. Calderon 5 Alberto Hornero 6 Rocio Hernandez-Clemente 7 M. Román-Écija 8 M. P. Velasco-Amo 9 B. B. Landa 10 P. S. A. Beck 11 M. Saponari 12 D. Boscia 13 J. A. Navas-Cortes 14 58435__21242__6e3a74317daf41f3898af1dd3cb45c7d.pdf 58435.pdf 2021-10-20T13:28:30.9783419 Output 2088890 application/pdf Version of Record true © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/
title Divergent abiotic spectral pathways unravel pathogen stress signals across species
spellingShingle Divergent abiotic spectral pathways unravel pathogen stress signals across species
Alberto Hornero
Rocio Hernandez-Clemente
title_short Divergent abiotic spectral pathways unravel pathogen stress signals across species
title_full Divergent abiotic spectral pathways unravel pathogen stress signals across species
title_fullStr Divergent abiotic spectral pathways unravel pathogen stress signals across species
title_full_unstemmed Divergent abiotic spectral pathways unravel pathogen stress signals across species
title_sort Divergent abiotic spectral pathways unravel pathogen stress signals across species
author_id_str_mv 3140d9cb2dde2c093d42d5bf3b85d05e
0b007e63ef097cd47d6bc60b58379103
author_id_fullname_str_mv 3140d9cb2dde2c093d42d5bf3b85d05e_***_Alberto Hornero
0b007e63ef097cd47d6bc60b58379103_***_Rocio Hernandez-Clemente
author Alberto Hornero
Rocio Hernandez-Clemente
author2 P. J. Zarco-Tejada
T. Poblete
C. Camino
V. Gonzalez-Dugo
R. Calderon
Alberto Hornero
Rocio Hernandez-Clemente
M. Román-Écija
M. P. Velasco-Amo
B. B. Landa
P. S. A. Beck
M. Saponari
D. Boscia
J. A. Navas-Cortes
format Journal article
container_title Nature Communications
container_volume 12
container_issue 1
container_start_page 6088
publishDate 2021
institution Swansea University
issn 2041-1723
doi_str_mv 10.1038/s41467-021-26335-3
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Geography{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Geography
document_store_str 1
active_str 0
description Abstract: Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic–abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide.
published_date 2021-10-19T04:14:58Z
_version_ 1763754008149753856
score 10.998252