No Cover Image

Journal article 243 views

KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0

Qiushi Cao, Cecilia Zanni-Merk, Ahmed Samet, Christoph Reich, François de Bertrand de Beuvron, Arnold Beckmann Orcid Logo, Cinzia Giannetti Orcid Logo

Robotics and Computer-Integrated Manufacturing, Volume: 74, Start page: 102281

Swansea University Authors: Qiushi Cao, Arnold Beckmann Orcid Logo, Cinzia Giannetti Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: Robotics and Computer-Integrated Manufacturing
ISSN: 0736-5845
Published: Elsevier BV 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58508
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-10-28T15:19:52Z
last_indexed 2021-11-24T04:15:59Z
id cronfa58508
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>58508</id><entry>2021-10-28</entry><title>KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0</title><swanseaauthors><author><sid>5c00afca4cb5fa62e43bda660a1a27b5</sid><firstname>Qiushi</firstname><surname>Cao</surname><name>Qiushi Cao</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a8d947a38cb58a8d2dfe6f50cb7eb1c6</sid><ORCID>0000-0003-0339-5872</ORCID><firstname>Cinzia</firstname><surname>Giannetti</surname><name>Cinzia Giannetti</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-28</date><deptcode>MTLS</deptcode><abstract/><type>Journal Article</type><journal>Robotics and Computer-Integrated Manufacturing</journal><volume>74</volume><journalNumber/><paginationStart>102281</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0736-5845</issnPrint><issnElectronic/><keywords>Industry 4.0; Predictive maintenance; Knowledge-based system; Chronicle mining; Ontology reasoning</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-04-01</publishedDate><doi>10.1016/j.rcim.2021.102281</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>his work is mainly funded by INTERREG Upper Rhine (European Regional Development Fund), Germany and the Ministries for Research of Baden-Württemberg, Rheinland-Pfalz (Germany) and the Grand Est French Region in the framework of the Science Offensive Upper Rhine HALFBACK project. Q. Cao and A. Beckmann (in part) are also supported by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom [grant number EPSRC EP/S018107/1]. C. Giannetti’s work is supported by the EPSRC, United Kingdom project [EP/S001387/1].</funders><projectreference/><lastEdited>2022-10-31T13:46:35.9726570</lastEdited><Created>2021-10-28T16:10:27.1366034</Created><path><level id="1">College of Science</level><level id="2">Computer Science</level></path><authors><author><firstname>Qiushi</firstname><surname>Cao</surname><order>1</order></author><author><firstname>Cecilia</firstname><surname>Zanni-Merk</surname><order>2</order></author><author><firstname>Ahmed</firstname><surname>Samet</surname><order>3</order></author><author><firstname>Christoph</firstname><surname>Reich</surname><order>4</order></author><author><firstname>François de Bertrand de</firstname><surname>Beuvron</surname><order>5</order></author><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>6</order></author><author><firstname>Cinzia</firstname><surname>Giannetti</surname><orcid>0000-0003-0339-5872</orcid><order>7</order></author></authors><documents><document><filename>Under embargo</filename><originalFilename>Under embargo</originalFilename><uploaded>2021-10-28T16:21:00.3152565</uploaded><type>Output</type><contentLength>7206137</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-11-12T00:00:00.0000000</embargoDate><documentNotes>©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling v2 58508 2021-10-28 KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 5c00afca4cb5fa62e43bda660a1a27b5 Qiushi Cao Qiushi Cao true false 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false a8d947a38cb58a8d2dfe6f50cb7eb1c6 0000-0003-0339-5872 Cinzia Giannetti Cinzia Giannetti true false 2021-10-28 MTLS Journal Article Robotics and Computer-Integrated Manufacturing 74 102281 Elsevier BV 0736-5845 Industry 4.0; Predictive maintenance; Knowledge-based system; Chronicle mining; Ontology reasoning 1 4 2022 2022-04-01 10.1016/j.rcim.2021.102281 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University his work is mainly funded by INTERREG Upper Rhine (European Regional Development Fund), Germany and the Ministries for Research of Baden-Württemberg, Rheinland-Pfalz (Germany) and the Grand Est French Region in the framework of the Science Offensive Upper Rhine HALFBACK project. Q. Cao and A. Beckmann (in part) are also supported by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom [grant number EPSRC EP/S018107/1]. C. Giannetti’s work is supported by the EPSRC, United Kingdom project [EP/S001387/1]. 2022-10-31T13:46:35.9726570 2021-10-28T16:10:27.1366034 College of Science Computer Science Qiushi Cao 1 Cecilia Zanni-Merk 2 Ahmed Samet 3 Christoph Reich 4 François de Bertrand de Beuvron 5 Arnold Beckmann 0000-0001-7958-5790 6 Cinzia Giannetti 0000-0003-0339-5872 7 Under embargo Under embargo 2021-10-28T16:21:00.3152565 Output 7206137 application/pdf Accepted Manuscript true 2022-11-12T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
spellingShingle KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
Qiushi Cao
Arnold Beckmann
Cinzia Giannetti
title_short KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
title_full KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
title_fullStr KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
title_full_unstemmed KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
title_sort KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
author_id_str_mv 5c00afca4cb5fa62e43bda660a1a27b5
1439ebd690110a50a797b7ec78cca600
a8d947a38cb58a8d2dfe6f50cb7eb1c6
author_id_fullname_str_mv 5c00afca4cb5fa62e43bda660a1a27b5_***_Qiushi Cao
1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann
a8d947a38cb58a8d2dfe6f50cb7eb1c6_***_Cinzia Giannetti
author Qiushi Cao
Arnold Beckmann
Cinzia Giannetti
author2 Qiushi Cao
Cecilia Zanni-Merk
Ahmed Samet
Christoph Reich
François de Bertrand de Beuvron
Arnold Beckmann
Cinzia Giannetti
format Journal article
container_title Robotics and Computer-Integrated Manufacturing
container_volume 74
container_start_page 102281
publishDate 2022
institution Swansea University
issn 0736-5845
doi_str_mv 10.1016/j.rcim.2021.102281
publisher Elsevier BV
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Computer Science{{{_:::_}}}College of Science{{{_:::_}}}Computer Science
document_store_str 0
active_str 0
published_date 2022-04-01T13:46:34Z
_version_ 1748211067738128384
score 10.917908