Journal article 1021 views 520 downloads
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
Qiushi Cao,
Cecilia Zanni-Merk,
Ahmed Samet,
Christoph Reich,
François de Bertrand de Beuvron,
Arnold Beckmann ,
Cinzia Giannetti
Robotics and Computer-Integrated Manufacturing, Volume: 74, Start page: 102281
Swansea University Authors: Qiushi Cao, Arnold Beckmann , Cinzia Giannetti
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (6.87MB)
DOI (Published version): 10.1016/j.rcim.2021.102281
Abstract
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
Published in: | Robotics and Computer-Integrated Manufacturing |
---|---|
ISSN: | 0736-5845 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58508 |
first_indexed |
2021-10-28T15:19:52Z |
---|---|
last_indexed |
2023-01-11T14:39:09Z |
id |
cronfa58508 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-31T13:46:35.9726570</datestamp><bib-version>v2</bib-version><id>58508</id><entry>2021-10-28</entry><title>KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0</title><swanseaauthors><author><sid>5c00afca4cb5fa62e43bda660a1a27b5</sid><firstname>Qiushi</firstname><surname>Cao</surname><name>Qiushi Cao</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a8d947a38cb58a8d2dfe6f50cb7eb1c6</sid><ORCID>0000-0003-0339-5872</ORCID><firstname>Cinzia</firstname><surname>Giannetti</surname><name>Cinzia Giannetti</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-28</date><deptcode>EAAS</deptcode><abstract/><type>Journal Article</type><journal>Robotics and Computer-Integrated Manufacturing</journal><volume>74</volume><journalNumber/><paginationStart>102281</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0736-5845</issnPrint><issnElectronic/><keywords>Industry 4.0; Predictive maintenance; Knowledge-based system; Chronicle mining; Ontology reasoning</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-04-01</publishedDate><doi>10.1016/j.rcim.2021.102281</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>his work is mainly funded by INTERREG Upper Rhine (European Regional Development Fund), Germany and the Ministries for Research of Baden-Württemberg, Rheinland-Pfalz (Germany) and the Grand Est French Region in the framework of the Science Offensive Upper Rhine HALFBACK project. Q. Cao and A. Beckmann (in part) are also supported by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom [grant number EPSRC EP/S018107/1]. C. Giannetti’s work is supported by the EPSRC, United Kingdom project [EP/S001387/1].</funders><projectreference/><lastEdited>2022-10-31T13:46:35.9726570</lastEdited><Created>2021-10-28T16:10:27.1366034</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Qiushi</firstname><surname>Cao</surname><order>1</order></author><author><firstname>Cecilia</firstname><surname>Zanni-Merk</surname><order>2</order></author><author><firstname>Ahmed</firstname><surname>Samet</surname><order>3</order></author><author><firstname>Christoph</firstname><surname>Reich</surname><order>4</order></author><author><firstname>François de Bertrand de</firstname><surname>Beuvron</surname><order>5</order></author><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>6</order></author><author><firstname>Cinzia</firstname><surname>Giannetti</surname><orcid>0000-0003-0339-5872</orcid><order>7</order></author></authors><documents><document><filename>58508__21357__61ded58d9c9a436093485e16e9f1a239.pdf</filename><originalFilename>Main.pdf</originalFilename><uploaded>2021-10-28T16:21:00.3152565</uploaded><type>Output</type><contentLength>7206137</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-11-12T00:00:00.0000000</embargoDate><documentNotes>©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-31T13:46:35.9726570 v2 58508 2021-10-28 KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 5c00afca4cb5fa62e43bda660a1a27b5 Qiushi Cao Qiushi Cao true false 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false a8d947a38cb58a8d2dfe6f50cb7eb1c6 0000-0003-0339-5872 Cinzia Giannetti Cinzia Giannetti true false 2021-10-28 EAAS Journal Article Robotics and Computer-Integrated Manufacturing 74 102281 Elsevier BV 0736-5845 Industry 4.0; Predictive maintenance; Knowledge-based system; Chronicle mining; Ontology reasoning 1 4 2022 2022-04-01 10.1016/j.rcim.2021.102281 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University his work is mainly funded by INTERREG Upper Rhine (European Regional Development Fund), Germany and the Ministries for Research of Baden-Württemberg, Rheinland-Pfalz (Germany) and the Grand Est French Region in the framework of the Science Offensive Upper Rhine HALFBACK project. Q. Cao and A. Beckmann (in part) are also supported by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom [grant number EPSRC EP/S018107/1]. C. Giannetti’s work is supported by the EPSRC, United Kingdom project [EP/S001387/1]. 2022-10-31T13:46:35.9726570 2021-10-28T16:10:27.1366034 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Qiushi Cao 1 Cecilia Zanni-Merk 2 Ahmed Samet 3 Christoph Reich 4 François de Bertrand de Beuvron 5 Arnold Beckmann 0000-0001-7958-5790 6 Cinzia Giannetti 0000-0003-0339-5872 7 58508__21357__61ded58d9c9a436093485e16e9f1a239.pdf Main.pdf 2021-10-28T16:21:00.3152565 Output 7206137 application/pdf Accepted Manuscript true 2022-11-12T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 |
spellingShingle |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 Qiushi Cao Arnold Beckmann Cinzia Giannetti |
title_short |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 |
title_full |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 |
title_fullStr |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 |
title_full_unstemmed |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 |
title_sort |
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 |
author_id_str_mv |
5c00afca4cb5fa62e43bda660a1a27b5 1439ebd690110a50a797b7ec78cca600 a8d947a38cb58a8d2dfe6f50cb7eb1c6 |
author_id_fullname_str_mv |
5c00afca4cb5fa62e43bda660a1a27b5_***_Qiushi Cao 1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann a8d947a38cb58a8d2dfe6f50cb7eb1c6_***_Cinzia Giannetti |
author |
Qiushi Cao Arnold Beckmann Cinzia Giannetti |
author2 |
Qiushi Cao Cecilia Zanni-Merk Ahmed Samet Christoph Reich François de Bertrand de Beuvron Arnold Beckmann Cinzia Giannetti |
format |
Journal article |
container_title |
Robotics and Computer-Integrated Manufacturing |
container_volume |
74 |
container_start_page |
102281 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0736-5845 |
doi_str_mv |
10.1016/j.rcim.2021.102281 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2022-04-01T14:07:33Z |
_version_ |
1822048915078250496 |
score |
11.04841 |