Journal article 874 views 77 downloads
Nonlinear Inequalities with Double Riesz Potentials
Potential Analysis, Volume: 59
Swansea University Author: Vitaly Moroz
-
PDF | Version of Record
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License
Download (359.95KB)
DOI (Published version): 10.1007/s11118-021-09962-9
Abstract
We investigate the nonnegative solutions to the nonlinear integral inequality u ≥ Iα ∗((Iβ ∗ up)uq) a.e. in RN, where α, β ∈ (0, N), p, q > 0 and Iα, Iβ denote the Riesz potentials of order α and β respectively. Our approach relies on a nonlocal positivity principle which allows us to derive opti...
Published in: | Potential Analysis |
---|---|
ISSN: | 0926-2601 1572-929X |
Published: |
Springer Science and Business Media LLC
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58510 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-10-28T16:19:30Z |
---|---|
last_indexed |
2023-01-11T14:39:09Z |
id |
cronfa58510 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>58510</id><entry>2021-10-28</entry><title>Nonlinear Inequalities with Double Riesz Potentials</title><swanseaauthors><author><sid>160965ff7131686ab9263d39886c8c1a</sid><ORCID>0000-0003-3302-8782</ORCID><firstname>Vitaly</firstname><surname>Moroz</surname><name>Vitaly Moroz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-28</date><deptcode>SMA</deptcode><abstract>We investigate the nonnegative solutions to the nonlinear integral inequality u ≥ Iα ∗((Iβ ∗ up)uq) a.e. in RN, where α, β ∈ (0, N), p, q > 0 and Iα, Iβ denote the Riesz potentials of order α and β respectively. Our approach relies on a nonlocal positivity principle which allows us to derive optimal ranges for the parameters α, β, p and q to describe the existence and the nonexistence of a solution. The optimal decay at infinity for such solutions is also discussed.</abstract><type>Journal Article</type><journal>Potential Analysis</journal><volume>59</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0926-2601</issnPrint><issnElectronic>1572-929X</issnElectronic><keywords>Nonlinear integral inequalities; Riesz potentials; Nonlocal positivity principle; Liouville theorems</keywords><publishedDay>26</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-26</publishedDate><doi>10.1007/s11118-021-09962-9</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders>IReL Consortium</funders><projectreference/><lastEdited>2023-06-29T15:13:48.4939287</lastEdited><Created>2021-10-28T17:15:39.8545512</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Marius</firstname><surname>Ghergu</surname><order>1</order></author><author><firstname>Zeng</firstname><surname>Liu</surname><order>2</order></author><author><firstname>Yasuhito</firstname><surname>Miyamoto</surname><order>3</order></author><author><firstname>Vitaly</firstname><surname>Moroz</surname><orcid>0000-0003-3302-8782</orcid><order>4</order></author></authors><documents><document><filename>58510__21361__dae928a40306462f9e69ecd3fd737d1e.pdf</filename><originalFilename>Ghergu2021_Article_NonlinearInequalitiesWithDoubl.pdf</originalFilename><uploaded>2021-10-28T17:18:59.9999693</uploaded><type>Output</type><contentLength>368587</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 58510 2021-10-28 Nonlinear Inequalities with Double Riesz Potentials 160965ff7131686ab9263d39886c8c1a 0000-0003-3302-8782 Vitaly Moroz Vitaly Moroz true false 2021-10-28 SMA We investigate the nonnegative solutions to the nonlinear integral inequality u ≥ Iα ∗((Iβ ∗ up)uq) a.e. in RN, where α, β ∈ (0, N), p, q > 0 and Iα, Iβ denote the Riesz potentials of order α and β respectively. Our approach relies on a nonlocal positivity principle which allows us to derive optimal ranges for the parameters α, β, p and q to describe the existence and the nonexistence of a solution. The optimal decay at infinity for such solutions is also discussed. Journal Article Potential Analysis 59 Springer Science and Business Media LLC 0926-2601 1572-929X Nonlinear integral inequalities; Riesz potentials; Nonlocal positivity principle; Liouville theorems 26 10 2021 2021-10-26 10.1007/s11118-021-09962-9 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University Other IReL Consortium 2023-06-29T15:13:48.4939287 2021-10-28T17:15:39.8545512 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Marius Ghergu 1 Zeng Liu 2 Yasuhito Miyamoto 3 Vitaly Moroz 0000-0003-3302-8782 4 58510__21361__dae928a40306462f9e69ecd3fd737d1e.pdf Ghergu2021_Article_NonlinearInequalitiesWithDoubl.pdf 2021-10-28T17:18:59.9999693 Output 368587 application/pdf Version of Record true © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Nonlinear Inequalities with Double Riesz Potentials |
spellingShingle |
Nonlinear Inequalities with Double Riesz Potentials Vitaly Moroz |
title_short |
Nonlinear Inequalities with Double Riesz Potentials |
title_full |
Nonlinear Inequalities with Double Riesz Potentials |
title_fullStr |
Nonlinear Inequalities with Double Riesz Potentials |
title_full_unstemmed |
Nonlinear Inequalities with Double Riesz Potentials |
title_sort |
Nonlinear Inequalities with Double Riesz Potentials |
author_id_str_mv |
160965ff7131686ab9263d39886c8c1a |
author_id_fullname_str_mv |
160965ff7131686ab9263d39886c8c1a_***_Vitaly Moroz |
author |
Vitaly Moroz |
author2 |
Marius Ghergu Zeng Liu Yasuhito Miyamoto Vitaly Moroz |
format |
Journal article |
container_title |
Potential Analysis |
container_volume |
59 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0926-2601 1572-929X |
doi_str_mv |
10.1007/s11118-021-09962-9 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We investigate the nonnegative solutions to the nonlinear integral inequality u ≥ Iα ∗((Iβ ∗ up)uq) a.e. in RN, where α, β ∈ (0, N), p, q > 0 and Iα, Iβ denote the Riesz potentials of order α and β respectively. Our approach relies on a nonlocal positivity principle which allows us to derive optimal ranges for the parameters α, β, p and q to describe the existence and the nonexistence of a solution. The optimal decay at infinity for such solutions is also discussed. |
published_date |
2021-10-26T15:13:44Z |
_version_ |
1770046645233254400 |
score |
11.029921 |