No Cover Image

Journal article 677 views 155 downloads

Hydrogen Peroxide Versus Hydrogen Generation at Bipolar Pd/Au Nano-catalysts Grown into an Intrinsically Microporous Polyamine (PIM-EA-TB)

Lina Wang, Mariolino Carta Orcid Logo, Richard Malpass-Evans, Neil B. McKeown, Philip J. Fletcher, Diana Lednitzky, Frank Marken

Electrocatalysis, Volume: 12, Issue: 6, Pages: 771 - 784

Swansea University Author: Mariolino Carta Orcid Logo

  • 58668.pdf

    PDF | Version of Record

    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (4.96MB)

Abstract

Binding of PdCl42− into the polymer of intrinsic microporosity PIM-EA-TB (on a Nylon mesh substrate) followed by borohydride reduction leads to uncapped Pd(0) nano-catalysts with typically 3.2 ± 0.2 nm diameter embedded within the microporous polymer host structure. Spontaneous reaction of Pd(0) wit...

Full description

Published in: Electrocatalysis
ISSN: 1868-2529 1868-5994
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58668
Abstract: Binding of PdCl42− into the polymer of intrinsic microporosity PIM-EA-TB (on a Nylon mesh substrate) followed by borohydride reduction leads to uncapped Pd(0) nano-catalysts with typically 3.2 ± 0.2 nm diameter embedded within the microporous polymer host structure. Spontaneous reaction of Pd(0) with formic acid and oxygen is shown to result in the competing formation of (i) hydrogen peroxide (at low formic acid concentration in air; with optimum H2O2 yield at 2 mM HCOOH), (ii) water, or (iii) hydrogen (at higher formic acid concentration or under argon). Next, a spontaneous electroless gold deposition process is employed to attach gold (typically 10- to 35-nm diameter) to the nano-palladium in PIM-EA-TB to give an order of magnitude enhanced production of H2O2 with high yields even at higher HCOOH concentration (suppressing hydrogen evolution). Pd and Au work hand-in-hand as bipolar electrocatalysts. A Clark probe method is developed to assess the catalyst efficiency (based on competing oxygen removal and hydrogen production) and a mass spectrometry method is developed to monitor/optimise the rate of production of hydrogen peroxide. Heterogenised Pd/Au@PIM-EA-TB catalysts are effective and allow easy catalyst recovery and reuse for hydrogen peroxide production.
Keywords: Biomass; Disinfection; Heterogenised palladium; Epoxidation; Hydrogen
College: Faculty of Science and Engineering
Funders: China Scholarship Council (201906870022); EP/K004956/1 from the EPSRC
Issue: 6
Start Page: 771
End Page: 784