No Cover Image

Journal article 754 views 124 downloads

Multiscale modelling of Potts shunt as a potential palliative treatment for suprasystemic idiopathic pulmonary artery hypertension: a paediatric case study

Sanjay Pant Orcid Logo, Aleksander Sizarov, Angela Knepper, Gaëtan Gossard, Alberto Noferi, Younes Boudjemline, Irene Vignon-Clementel

Biomechanics and Modeling in Mechanobiology, Volume: 21, Issue: 2, Pages: 471 - 511

Swansea University Authors: Sanjay Pant Orcid Logo, Angela Knepper

  • 58939.pdf

    PDF | Version of Record

    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (7.89MB)

Abstract

Potts shunt (PS) was suggested as palliation for patients with suprasystemic pulmonary arterial hypertension (PAH) and right ventricular (RV) failure. PS, however, can result in poorly understood mortality. Here, a patient-specic geometrical multiscale model of PAH physiology and PS is developed for...

Full description

Published in: Biomechanics and Modeling in Mechanobiology
ISSN: 1617-7959 1617-7940
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58939
Abstract: Potts shunt (PS) was suggested as palliation for patients with suprasystemic pulmonary arterial hypertension (PAH) and right ventricular (RV) failure. PS, however, can result in poorly understood mortality. Here, a patient-specic geometrical multiscale model of PAH physiology and PS is developed for a paediatric PAH patient with stent-based PS. In the model, 7.6mm-diameter PS produces near-equalisation of the aortic and PA pressures and Qp=Qs (oxygenated vs deoxygenated blood flow) ratio of 0.72 associated with a 16% decrease of left ventricular (LV) output and 18% increase of RV output. The flow from LV to aortic arch branches increases by 16%, while LV contribution to the lower body flow decreases by 29%. Total flow in the descending aorta (DAo) increases by 18% due to RV contribution through the PS with flow into the distal PA branches decreasing. PS induces 18%increase of RV work due to its larger stroke volume pumped against lower afterload. Nonetheless, larger RV work does not lead to increased RV end-diastolic volume. Three-dimensional flow assessment demonstrates the PS jet impinging with a high velocity and wall shear stress on the opposite DAo wall with the most of the shunt flow being diverted to the DAo. Increasing the PS diameter from 5mm up to 10mm results in a nearly linear increase in post-operative shunt flow and a nearly linear decrease in shunt pressure-drop. In conclusion, this model reasonably represents patient-specic haemodynamics pre- and post-creation of the PS, providing insights into physiology ofthis complex condition, and presents a predictive tool that could be useful for clinical decision-making regarding suitability for PS in PAH patients with drug-resistant suprasystemic PAH.
Keywords: Pulmonary artery hypertension, Potts shunt, lumped parameter model, multiscale model, computa-tional haemodynamics
College: Faculty of Science and Engineering
Funders: Open Access funding enabled and organized by Projekt DEAL. European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 864313). This work is supported by the EPSRC Grant Number EP/R010811/1.
Issue: 2
Start Page: 471
End Page: 511