No Cover Image

Journal article 153 views 136 downloads

Cold atoms meet lattice gauge theory

Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemysław R. Grzybowski, Simon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliūnas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Germán Sierra, Luca Tagliacozzo, Emanuele Tirrito, Torsten V. Zache, Jakub Zakrzewski, Erez Zohar, Maciej Lewenstein

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume: 380, Issue: 2216, Start page: 20210064

Swansea University Author: Simon Hands

  • rsta.2021.0064.pdf

    PDF | Version of Record

    2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited

    Download (1.24MB)

Check full text

DOI (Published version): 10.1098/rsta.2021.0064

Abstract

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more ‘accessible’ and easier to manipulate for experimentalists, but this ‘...

Full description

Published in: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN: 1364-503X 1471-2962
Published: The Royal Society 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59065
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-01-04T13:58:47Z
last_indexed 2022-01-20T04:30:35Z
id cronfa59065
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-01-19T16:56:17.4674231</datestamp><bib-version>v2</bib-version><id>59065</id><entry>2022-01-04</entry><title>Cold atoms meet lattice gauge theory</title><swanseaauthors><author><sid>b34293f7370adc1d2cac9b93717a61c7</sid><firstname>Simon</firstname><surname>Hands</surname><name>Simon Hands</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-04</date><deptcode>FGSEN</deptcode><abstract>The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more &#x2018;accessible&#x2019; and easier to manipulate for experimentalists, but this &#x2018;substitution&#x2019; also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or Z2 Bose&#x2013;Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz&#x2013;Hubbard ladder, or Gross&#x2013;Neveu&#x2013;Wilson and Wilson&#x2013;Hubbard models. This article is not a general review of the rapidly growing field&#x2014;it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue &#x2018;Quantum technologies in particle physics&#x2019;.</abstract><type>Journal Article</type><journal>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</journal><volume>380</volume><journalNumber>2216</journalNumber><paginationStart>20210064</paginationStart><paginationEnd/><publisher>The Royal Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1364-503X</issnPrint><issnElectronic>1471-2962</issnElectronic><keywords>quantum simulations, lattice gauge theory, ultracold quantum matter</keywords><publishedDay>7</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-02-07</publishedDate><doi>10.1098/rsta.2021.0064</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>National Science Centre, Poland Grant: Symfonia Grant No. 2016/20/W/ST4/00314 ERC Grant: NOQIA Plan National FIDEUA Grant: PID2019-106901GB-I00/10.13039 / 501100011033 Marie Sk&#x142;odowska-Curie Grant: STRETCH No 101029393 Plan Nacional Generaci&#xF3;n de Conocimiento Grant: PGC2018-095862-B-C22 State Research Agency AEI Grant: CEX2019-000910-S Caixa Foundation Grant: LCF/BQ/PR20/11770012 Fundaci&#xF3; Privada Cellex National Science Centre (Poland) Grant: 2017/25/Z/ST2/03029 Generalitat de Catalunya Grant: AGAUR Grant No. 2017 SGR 1341 Grant: CERCA program Grant: QuantumCAT U16-011424 Grant: co-funded by ERDF Operational Program of Catalonia Identifier: Id http://dx.doi.org/10.13039/501100002809 EU Horizon 2020 FET-OPEN OPTOLogic Grant: 899794 Ram&#xF3;n y Cajal Grant: RYC-2016-20594 QUANTERA MAQS Grant: PCI2019-111828-2 / 10.13039/501100011033 State Agency for Research of the Spanish Ministry of Science and Innovation Grant: CEX2019-000918-M Fundaci&#xF3; Mir-Puig STFC Consolidated Grant Grant: ST/T000813/1</funders><lastEdited>2022-01-19T16:56:17.4674231</lastEdited><Created>2022-01-04T13:54:11.5502038</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Monika</firstname><surname>Aidelsburger</surname><order>1</order></author><author><firstname>Luca</firstname><surname>Barbiero</surname><order>2</order></author><author><firstname>Alejandro</firstname><surname>Bermudez</surname><order>3</order></author><author><firstname>Titas</firstname><surname>Chanda</surname><order>4</order></author><author><firstname>Alexandre</firstname><surname>Dauphin</surname><order>5</order></author><author><firstname>Daniel</firstname><surname>Gonz&#xE1;lez-Cuadra</surname><order>6</order></author><author><firstname>Przemys&#x142;aw R.</firstname><surname>Grzybowski</surname><order>7</order></author><author><firstname>Simon</firstname><surname>Hands</surname><order>8</order></author><author><firstname>Fred</firstname><surname>Jendrzejewski</surname><order>9</order></author><author><firstname>Johannes</firstname><surname>J&#xFC;nemann</surname><order>10</order></author><author><firstname>Gediminas</firstname><surname>Juzeli&#x16B;nas</surname><order>11</order></author><author><firstname>Valentin</firstname><surname>Kasper</surname><order>12</order></author><author><firstname>Angelo</firstname><surname>Piga</surname><order>13</order></author><author><firstname>Shi-Ju</firstname><surname>Ran</surname><order>14</order></author><author><firstname>Matteo</firstname><surname>Rizzi</surname><order>15</order></author><author><firstname>Germ&#xE1;n</firstname><surname>Sierra</surname><order>16</order></author><author><firstname>Luca</firstname><surname>Tagliacozzo</surname><order>17</order></author><author><firstname>Emanuele</firstname><surname>Tirrito</surname><order>18</order></author><author><firstname>Torsten V.</firstname><surname>Zache</surname><order>19</order></author><author><firstname>Jakub</firstname><surname>Zakrzewski</surname><order>20</order></author><author><firstname>Erez</firstname><surname>Zohar</surname><order>21</order></author><author><firstname>Maciej</firstname><surname>Lewenstein</surname><order>22</order></author></authors><documents><document><filename>59065__22004__32ac847522d648b99ef7f2fe2283e7ee.pdf</filename><originalFilename>rsta.2021.0064.pdf</originalFilename><uploaded>2022-01-04T13:54:11.4549228</uploaded><type>Output</type><contentLength>1295249</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-01-19T16:56:17.4674231 v2 59065 2022-01-04 Cold atoms meet lattice gauge theory b34293f7370adc1d2cac9b93717a61c7 Simon Hands Simon Hands true false 2022-01-04 FGSEN The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more ‘accessible’ and easier to manipulate for experimentalists, but this ‘substitution’ also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or Z2 Bose–Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz–Hubbard ladder, or Gross–Neveu–Wilson and Wilson–Hubbard models. This article is not a general review of the rapidly growing field—it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue ‘Quantum technologies in particle physics’. Journal Article Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 2216 20210064 The Royal Society 1364-503X 1471-2962 quantum simulations, lattice gauge theory, ultracold quantum matter 7 2 2022 2022-02-07 10.1098/rsta.2021.0064 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University National Science Centre, Poland Grant: Symfonia Grant No. 2016/20/W/ST4/00314 ERC Grant: NOQIA Plan National FIDEUA Grant: PID2019-106901GB-I00/10.13039 / 501100011033 Marie Skłodowska-Curie Grant: STRETCH No 101029393 Plan Nacional Generación de Conocimiento Grant: PGC2018-095862-B-C22 State Research Agency AEI Grant: CEX2019-000910-S Caixa Foundation Grant: LCF/BQ/PR20/11770012 Fundació Privada Cellex National Science Centre (Poland) Grant: 2017/25/Z/ST2/03029 Generalitat de Catalunya Grant: AGAUR Grant No. 2017 SGR 1341 Grant: CERCA program Grant: QuantumCAT U16-011424 Grant: co-funded by ERDF Operational Program of Catalonia Identifier: Id http://dx.doi.org/10.13039/501100002809 EU Horizon 2020 FET-OPEN OPTOLogic Grant: 899794 Ramón y Cajal Grant: RYC-2016-20594 QUANTERA MAQS Grant: PCI2019-111828-2 / 10.13039/501100011033 State Agency for Research of the Spanish Ministry of Science and Innovation Grant: CEX2019-000918-M Fundació Mir-Puig STFC Consolidated Grant Grant: ST/T000813/1 2022-01-19T16:56:17.4674231 2022-01-04T13:54:11.5502038 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Monika Aidelsburger 1 Luca Barbiero 2 Alejandro Bermudez 3 Titas Chanda 4 Alexandre Dauphin 5 Daniel González-Cuadra 6 Przemysław R. Grzybowski 7 Simon Hands 8 Fred Jendrzejewski 9 Johannes Jünemann 10 Gediminas Juzeliūnas 11 Valentin Kasper 12 Angelo Piga 13 Shi-Ju Ran 14 Matteo Rizzi 15 Germán Sierra 16 Luca Tagliacozzo 17 Emanuele Tirrito 18 Torsten V. Zache 19 Jakub Zakrzewski 20 Erez Zohar 21 Maciej Lewenstein 22 59065__22004__32ac847522d648b99ef7f2fe2283e7ee.pdf rsta.2021.0064.pdf 2022-01-04T13:54:11.4549228 Output 1295249 application/pdf Version of Record true 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited true eng http://creativecommons.org/licenses/by/4.0/
title Cold atoms meet lattice gauge theory
spellingShingle Cold atoms meet lattice gauge theory
Simon Hands
title_short Cold atoms meet lattice gauge theory
title_full Cold atoms meet lattice gauge theory
title_fullStr Cold atoms meet lattice gauge theory
title_full_unstemmed Cold atoms meet lattice gauge theory
title_sort Cold atoms meet lattice gauge theory
author_id_str_mv b34293f7370adc1d2cac9b93717a61c7
author_id_fullname_str_mv b34293f7370adc1d2cac9b93717a61c7_***_Simon Hands
author Simon Hands
author2 Monika Aidelsburger
Luca Barbiero
Alejandro Bermudez
Titas Chanda
Alexandre Dauphin
Daniel González-Cuadra
Przemysław R. Grzybowski
Simon Hands
Fred Jendrzejewski
Johannes Jünemann
Gediminas Juzeliūnas
Valentin Kasper
Angelo Piga
Shi-Ju Ran
Matteo Rizzi
Germán Sierra
Luca Tagliacozzo
Emanuele Tirrito
Torsten V. Zache
Jakub Zakrzewski
Erez Zohar
Maciej Lewenstein
format Journal article
container_title Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
container_volume 380
container_issue 2216
container_start_page 20210064
publishDate 2022
institution Swansea University
issn 1364-503X
1471-2962
doi_str_mv 10.1098/rsta.2021.0064
publisher The Royal Society
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more ‘accessible’ and easier to manipulate for experimentalists, but this ‘substitution’ also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or Z2 Bose–Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz–Hubbard ladder, or Gross–Neveu–Wilson and Wilson–Hubbard models. This article is not a general review of the rapidly growing field—it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue ‘Quantum technologies in particle physics’.
published_date 2022-02-07T04:16:05Z
_version_ 1763754078468308992
score 11.012678