No Cover Image

Journal article 36 views 15 downloads

Resonant passive energy balancing of morphing helicopter blades with bend–twist coupling

Javad Taghipour, Jiaying Zhang, Alexander Shaw Orcid Logo, Michael Friswell, Huayuan Gu, Chen Wang

Nonlinear Dynamics, Volume: 107, Issue: 1, Pages: 617 - 639

Swansea University Authors: Javad Taghipour, Alexander Shaw Orcid Logo, Michael Friswell

  • 11071_2021_Article_7067.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

    Download (6.07MB)

Abstract

With increasing demand for rotor blades in engineering applications, improving the performance of such structures using morphing blades has received considerable attention. Resonant passive energy balancing (RPEB) is a relatively new concept introduced to minimize the required actuation energy. This...

Full description

Published in: Nonlinear Dynamics
ISSN: 0924-090X 1573-269X
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59135
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: With increasing demand for rotor blades in engineering applications, improving the performance of such structures using morphing blades has received considerable attention. Resonant passive energy balancing (RPEB) is a relatively new concept introduced to minimize the required actuation energy. This study investigates RPEB in morphing helicopter blades with lag–twist coupling. The structure of a rotating blade with a moving mass at the tip is considered under aerodynamic loading. To this end, a three-degree-of-freedom (3DOF) reduced-order model is used to analyse and understand the complicated nonlinear aeroelastic behaviour of the structure. This model includes the pitch angle and lagging of the blade, along with the motion of the moving mass. First, the 3DOF model is simplified to a single-degree-of-freedom model for the pitch angle dynamics of the blade to examine the effect of important parameters on the pitch response. The results demonstrate that the coefficient of lag–twist coupling and the direction of aerodynamic moment on the blade are two parameters that play important roles in controlling the pitch angle, particularly the phase. Then, neglecting the aerodynamic forces, the 3DOF system is studied to investigate the sensitivity of its dynamics to changes in the parameters of the system. The results of the structural analysis can be used to tune the parameters of the blade in order to use the resonant energy of the structure and to reduce the required actuation force. A sensitivity analysis is then performed on the dynamics of the 3DOF model in the presence of aerodynamic forces to investigate the controllability of the amplitude and phase of the pitch angle. The results show that the bend–twist coupling and the distance between the aerodynamic centre and the rotation centre (representing the direction and magnitude of aerodynamic moments) play significant roles in determining the pitch dynamics.
Keywords: Helicopter blade morphing, Resonant passive energy balancing, Bend–twist coupling, Inertial morphing
College: College of Engineering
Funders: European Commission under the European Union’s Horizon 2020 Framework Programme ‘Shape Adaptive Blades for Rotorcraft Efficiency’ Grant Agreement 723491.
Issue: 1
Start Page: 617
End Page: 639