Journal article 729 views 233 downloads
Studying Activated Fibroblast Phenotypes and Fibrosis‐Linked Mechanosensing Using 3D Biomimetic Models
Macromolecular Bioscience, Volume: 22, Issue: 4, Start page: 2100450
Swansea University Authors: FRANCESCA PARADISO, Marcos Quintela Vazquez, David James, Steve Conlan , Lewis Francis
-
PDF | Version of Record
© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License
Download (3.15MB)
DOI (Published version): 10.1002/mabi.202100450
Abstract
Fibrosis and solid tumor progression are closely related, with both involving pathways associated with chronic wound dysregulation. Fibroblasts contribute to extracellular matrix (ECM) remodeling in these processes, a crucial step in scarring, organ failure, and tumor growth, but little is known abo...
Published in: | Macromolecular Bioscience |
---|---|
ISSN: | 1616-5187 1616-5195 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59159 |
Abstract: |
Fibrosis and solid tumor progression are closely related, with both involving pathways associated with chronic wound dysregulation. Fibroblasts contribute to extracellular matrix (ECM) remodeling in these processes, a crucial step in scarring, organ failure, and tumor growth, but little is known about the biophysical evolution of remodeling regulation during the development and progression of matrix-related diseases including fibrosis and cancer. A 3D collagen-based scaffold model is employed here to mimic mechanical changes in normal (2 kPa, soft) versus advanced pathological (12 kPa, stiff) tissues. Activated fibroblasts grown on stiff scaffolds show lower migration and increased cell circularity compared to those on soft scaffolds. This is reflected in gene expression profiles, with cells cultured on stiff scaffolds showing upregulated DNA replication, DNA repair, and chromosome organization gene clusters, and a concomitant loss of ability to remodel and deposit ECM. Soft scaffolds can reproduce biophysically meaningful microenvironments to investigate early stage processes in wound healing and tumor niche formation, while stiff scaffolds can mimic advanced fibrotic and cancer stages. These results establish the need for tunable, affordable 3D scaffolds as platforms for aberrant stroma research and reveal the contribution of physiological and pathological microenvironment biomechanics to gene expression changes in the stromal compartment. |
---|---|
Keywords: |
3D model; cancer; fibrosis; mechanics; microenvironment; stroma |
College: |
Faculty of Medicine, Health and Life Sciences |
Funders: |
European Regional Development Fund through the Welsh Government |
Issue: |
4 |
Start Page: |
2100450 |