No Cover Image

Journal article 58 views 21 downloads

Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion ( Panthera leo )

Richard Gunner, Rory Wilson Orcid Logo, Mark Holton Orcid Logo, Philip Hopkins, Stephen H. Bell, Nikki J. Marks, Nigel C. Bennett Orcid Logo, Sam Ferreira, Danny Govender, Pauli Viljoen, Angela Bruns, O. Louis van Schalkwyk, Mads F. Bertelsen, Carlos M. Duarte, Martin C. van Rooyen Orcid Logo, Craig J. Tambling Orcid Logo, Aoife Göppert Orcid Logo, Delmar Diesel, D. Michael Scantlebury

Journal of The Royal Society Interface, Volume: 19, Issue: 186, Start page: 20210692

Swansea University Authors: Richard Gunner, Rory Wilson Orcid Logo, Mark Holton Orcid Logo, Philip Hopkins

  • rsif.2021.0692.pdf

    PDF | Version of Record

    © 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License

    Download (1.54MB)

Check full text

DOI (Published version): 10.1098/rsif.2021.0692

Abstract

The combined use of global positioning system (GPS) technology and motion sensors within the discipline of movement ecology has increased over recent years. This is particularly the case for instrumented wildlife, with many studies now opting to record parameters at high (infra-second) sampling freq...

Full description

Published in: Journal of The Royal Society Interface
ISSN: 1742-5662
Published: The Royal Society 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59241
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The combined use of global positioning system (GPS) technology and motion sensors within the discipline of movement ecology has increased over recent years. This is particularly the case for instrumented wildlife, with many studies now opting to record parameters at high (infra-second) sampling frequencies. However, the detail with which GPS loggers can elucidate fine-scale movement depends on the precision and accuracy of fixes, with accuracy being affected by signal reception. We hypothesized that animal behaviour was the main factor affecting fix inaccuracy, with inherent GPS positional noise (jitter) being most apparent during GPS fixes for non-moving locations, thereby producing disproportionate error during rest periods. A movement-verified filtering (MVF) protocol was constructed to compare GPS-derived speed data with dynamic body acceleration, to provide a computationally quick method for identifying genuine travelling movement. This method was tested on 11 free-ranging lions (Panthera leo) fitted with collar-mounted GPS units and tri-axial motion sensors recording at 1 and 40 Hz, respectively. The findings support the hypothesis and show that distance moved estimates were, on average, overestimated by greater than 80% prior to GPS screening. We present the conceptual and mathematical protocols for screening fix inaccuracy within high-resolution GPS datasets and demonstrate the importance that MVF has for avoiding inaccurate and biased estimates of movement.
Keywords: acceleration, animal behaviour, data filtering, global positioning system, highresolution, terrestrial movement
College: College of Science
Funders: King Abdullah University of Science and Technology (KAUST) for Economy Global Challenges Research
Issue: 186
Start Page: 20210692