Journal article 759 views 188 downloads
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
Advanced Materials, Volume: 34, Issue: 9, Start page: 2107850
Swansea University Author: James Durrant
-
PDF | Version of Record
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Download (7.35MB)
DOI (Published version): 10.1002/adma.202107850
Abstract
Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing a...
Published in: | Advanced Materials |
---|---|
ISSN: | 0935-9648 1521-4095 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59285 |
first_indexed |
2022-01-31T16:48:36Z |
---|---|
last_indexed |
2022-04-09T03:24:38Z |
id |
cronfa59285 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-04-08T17:15:34.0669777</datestamp><bib-version>v2</bib-version><id>59285</id><entry>2022-01-31</entry><title>Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-31</date><deptcode>EAAS</deptcode><abstract>Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing at 150 °C whilst the obtained α‐FAPbI3 is metastable at room temperature. Here, aerosol‐assisted crystallization (AAC) is reported, which converts yellow δ‐FAPbI3 into black α‐FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α‐FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X‐ray diffraction, X‐ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post‐crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase‐stable α‐FAPbI3. This overcomes the strain‐induced lattice expansion that is known to cause the metastability of α‐FAPbI3. Accordingly, pure FAPbI3 p–i–n solar cells are reported, facilitated by the low‐temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films.</abstract><type>Journal Article</type><journal>Advanced Materials</journal><volume>34</volume><journalNumber>9</journalNumber><paginationStart>2107850</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0935-9648</issnPrint><issnElectronic>1521-4095</issnElectronic><keywords>additive-free; aerosol-assisted crystallization; formamidinium lead triiodide; stability; strain</keywords><publishedDay>3</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-03</publishedDate><doi>10.1002/adma.202107850</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC Plastic Electronics. Grant Number: EP/L016702/1; QMUL-EPSRC Impact Accelerator Account; Stephen and Anna Hui Scholarship; Imperial College London; U.S. Department of Energy; Office of Science; Basic Energy Sciences; Materials Sciences and Engineering Division. Grant Number: DE-AC02-05-CH11231; Global Research Laboratory; National Research Foundation of Korea. Grant Number: NRF-2017K1A1A2013153</funders><lastEdited>2022-04-08T17:15:34.0669777</lastEdited><Created>2022-01-31T16:46:04.5734467</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Tian</firstname><surname>Du</surname><orcid>0000-0002-0566-1145</orcid><order>1</order></author><author><firstname>Thomas J.</firstname><surname>Macdonald</surname><orcid>0000-0002-7520-6893</orcid><order>2</order></author><author><firstname>Ruo Xi</firstname><surname>Yang</surname><orcid>0000-0001-8225-5856</orcid><order>3</order></author><author><firstname>Meng</firstname><surname>Li</surname><orcid>0000-0003-0360-7791</orcid><order>4</order></author><author><firstname>Zhongyao</firstname><surname>Jiang</surname><order>5</order></author><author><firstname>Lokeshwari</firstname><surname>Mohan</surname><order>6</order></author><author><firstname>Weidong</firstname><surname>Xu</surname><orcid>0000-0002-3934-8579</orcid><order>7</order></author><author><firstname>Zhenhuang</firstname><surname>Su</surname><order>8</order></author><author><firstname>Xingyu</firstname><surname>Gao</surname><orcid>0000-0003-1477-0092</orcid><order>9</order></author><author><firstname>Richard</firstname><surname>Whiteley</surname><order>10</order></author><author><firstname>Chieh‐Ting</firstname><surname>Lin</surname><orcid>0000-0002-9591-0888</orcid><order>11</order></author><author><firstname>Ganghong</firstname><surname>Min</surname><orcid>0000-0001-8322-7304</orcid><order>12</order></author><author><firstname>Saif A.</firstname><surname>Haque</surname><orcid>0000-0001-5483-3321</orcid><order>13</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>14</order></author><author><firstname>Kristin A.</firstname><surname>Persson</surname><orcid>0000-0003-2495-5509</orcid><order>15</order></author><author><firstname>Martyn A.</firstname><surname>McLachlan</surname><order>16</order></author><author><firstname>Joe</firstname><surname>Briscoe</surname><orcid>0000-0002-5925-860x</orcid><order>17</order></author></authors><documents><document><filename>59285__22261__63d870fd4f424bfd9d76ed2511f7ffcf.pdf</filename><originalFilename>adma.202107850.pdf</originalFilename><uploaded>2022-01-31T16:46:04.5567882</uploaded><type>Output</type><contentLength>7712115</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-04-08T17:15:34.0669777 v2 59285 2022-01-31 Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2022-01-31 EAAS Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing at 150 °C whilst the obtained α‐FAPbI3 is metastable at room temperature. Here, aerosol‐assisted crystallization (AAC) is reported, which converts yellow δ‐FAPbI3 into black α‐FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α‐FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X‐ray diffraction, X‐ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post‐crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase‐stable α‐FAPbI3. This overcomes the strain‐induced lattice expansion that is known to cause the metastability of α‐FAPbI3. Accordingly, pure FAPbI3 p–i–n solar cells are reported, facilitated by the low‐temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films. Journal Article Advanced Materials 34 9 2107850 Wiley 0935-9648 1521-4095 additive-free; aerosol-assisted crystallization; formamidinium lead triiodide; stability; strain 3 3 2022 2022-03-03 10.1002/adma.202107850 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University EPSRC Plastic Electronics. Grant Number: EP/L016702/1; QMUL-EPSRC Impact Accelerator Account; Stephen and Anna Hui Scholarship; Imperial College London; U.S. Department of Energy; Office of Science; Basic Energy Sciences; Materials Sciences and Engineering Division. Grant Number: DE-AC02-05-CH11231; Global Research Laboratory; National Research Foundation of Korea. Grant Number: NRF-2017K1A1A2013153 2022-04-08T17:15:34.0669777 2022-01-31T16:46:04.5734467 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Tian Du 0000-0002-0566-1145 1 Thomas J. Macdonald 0000-0002-7520-6893 2 Ruo Xi Yang 0000-0001-8225-5856 3 Meng Li 0000-0003-0360-7791 4 Zhongyao Jiang 5 Lokeshwari Mohan 6 Weidong Xu 0000-0002-3934-8579 7 Zhenhuang Su 8 Xingyu Gao 0000-0003-1477-0092 9 Richard Whiteley 10 Chieh‐Ting Lin 0000-0002-9591-0888 11 Ganghong Min 0000-0001-8322-7304 12 Saif A. Haque 0000-0001-5483-3321 13 James Durrant 0000-0001-8353-7345 14 Kristin A. Persson 0000-0003-2495-5509 15 Martyn A. McLachlan 16 Joe Briscoe 0000-0002-5925-860x 17 59285__22261__63d870fd4f424bfd9d76ed2511f7ffcf.pdf adma.202107850.pdf 2022-01-31T16:46:04.5567882 Output 7712115 application/pdf Version of Record true This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. true eng http://creativecommons.org/licenses/by-nc/4.0/ |
title |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite |
spellingShingle |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite James Durrant |
title_short |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite |
title_full |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite |
title_fullStr |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite |
title_full_unstemmed |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite |
title_sort |
Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite |
author_id_str_mv |
f3dd64bc260e5c07adfa916c27dbd58a |
author_id_fullname_str_mv |
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant |
author |
James Durrant |
author2 |
Tian Du Thomas J. Macdonald Ruo Xi Yang Meng Li Zhongyao Jiang Lokeshwari Mohan Weidong Xu Zhenhuang Su Xingyu Gao Richard Whiteley Chieh‐Ting Lin Ganghong Min Saif A. Haque James Durrant Kristin A. Persson Martyn A. McLachlan Joe Briscoe |
format |
Journal article |
container_title |
Advanced Materials |
container_volume |
34 |
container_issue |
9 |
container_start_page |
2107850 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0935-9648 1521-4095 |
doi_str_mv |
10.1002/adma.202107850 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing at 150 °C whilst the obtained α‐FAPbI3 is metastable at room temperature. Here, aerosol‐assisted crystallization (AAC) is reported, which converts yellow δ‐FAPbI3 into black α‐FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α‐FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X‐ray diffraction, X‐ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post‐crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase‐stable α‐FAPbI3. This overcomes the strain‐induced lattice expansion that is known to cause the metastability of α‐FAPbI3. Accordingly, pure FAPbI3 p–i–n solar cells are reported, facilitated by the low‐temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films. |
published_date |
2022-03-03T02:28:20Z |
_version_ |
1822004924602384384 |
score |
11.048042 |