E-Thesis 575 views
Advanced Mechanical Test Techniques applied to SiCf/SiC Ceramic Matrix Composites / STEVEN JORDAN
Swansea University Author: STEVEN JORDAN
DOI (Published version): 10.23889/SUthesis.59465
Abstract
Novel test development and the use of more traditional test techniques were applied to the characterisation of a potential, fibre reinforced SiCf/SiC ceramic matrix composite (CMC) system. Isothermal load controlled low cycle fatigue (LCF), strain controlled LCF (SLCF), and thermo-mechanical fatigue...
Published: |
Swansea
2022
|
---|---|
Institution: | Swansea University |
Degree level: | Doctoral |
Degree name: | Ph.D |
Supervisor: | Bache, Martin |
URI: | https://cronfa.swan.ac.uk/Record/cronfa59465 |
Abstract: |
Novel test development and the use of more traditional test techniques were applied to the characterisation of a potential, fibre reinforced SiCf/SiC ceramic matrix composite (CMC) system. Isothermal load controlled low cycle fatigue (LCF), strain controlled LCF (SLCF), and thermo-mechanical fatigue (TMF) data are reported to provide a constitutive assessment of mechanical properties. In addition, a specialist in-situ tensile test rig was designed for experiments inside an SEM plus experiments performed under in-situ X-ray tomography were conducted to establish microscopic damage networks and failure mechanisms in this class of CMC. The role of environment on fibre-matrix cohesion was addressed, in recognition of the demanding conditions CMC components may experience if selected for service in future gas turbine designs. The integrity of the interface resulting from water ingress through the composite structure was characterised and the subsequent effects on strength and fatigue properties were evaluated. |
---|---|
Keywords: |
CMC, Mechanical Testing |
College: |
Faculty of Science and Engineering |