Journal article 819 views
A predictive deep learning framework for path-dependent mechanical behavior of granular materials
Acta Geotechnica, Volume: 17, Issue: 8, Pages: 3463 - 3478
Swansea University Authors: Yuntian Feng , Shaoheng Guan Guan
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/s11440-021-01419-y
Abstract
A predictive deep learning framework for path-dependent mechanical behavior of granular materials
Published in: | Acta Geotechnica |
---|---|
ISSN: | 1861-1125 1861-1133 |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59484 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-03-03T11:00:12Z |
---|---|
last_indexed |
2023-01-11T14:40:48Z |
id |
cronfa59484 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-08-04T10:12:24.3645110</datestamp><bib-version>v2</bib-version><id>59484</id><entry>2022-03-03</entry><title>A predictive deep learning framework for path-dependent mechanical behavior of granular materials</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>8be5dace79e94a4d0abd32215a13f806</sid><firstname>Shaoheng Guan</firstname><surname>Guan</surname><name>Shaoheng Guan Guan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-03-03</date><deptcode>CIVL</deptcode><abstract/><type>Journal Article</type><journal>Acta Geotechnica</journal><volume>17</volume><journalNumber>8</journalNumber><paginationStart>3463</paginationStart><paginationEnd>3478</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1861-1125</issnPrint><issnElectronic>1861-1133</issnElectronic><keywords>Data-driven; DEM; Granular materials; LSTM cell; Path-dependency</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-01</publishedDate><doi>10.1007/s11440-021-01419-y</doi><url>http://dx.doi.org/10.1007/s11440-021-01419-y</url><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-08-04T10:12:24.3645110</lastEdited><Created>2022-03-03T10:57:02.3446363</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Gang</firstname><surname>Ma</surname><order>1</order></author><author><firstname>Shaoheng</firstname><surname>Guan</surname><orcid>0000-0003-1630-5493</orcid><order>2</order></author><author><firstname>Qiao</firstname><surname>Wang</surname><order>3</order></author><author><firstname>Y. T.</firstname><surname>Feng</surname><order>4</order></author><author><firstname>Wei</firstname><surname>Zhou</surname><order>5</order></author><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>6</order></author><author><firstname>Shaoheng Guan</firstname><surname>Guan</surname><order>7</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-08-04T10:12:24.3645110 v2 59484 2022-03-03 A predictive deep learning framework for path-dependent mechanical behavior of granular materials d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 8be5dace79e94a4d0abd32215a13f806 Shaoheng Guan Guan Shaoheng Guan Guan true false 2022-03-03 CIVL Journal Article Acta Geotechnica 17 8 3463 3478 Springer Science and Business Media LLC 1861-1125 1861-1133 Data-driven; DEM; Granular materials; LSTM cell; Path-dependency 1 8 2022 2022-08-01 10.1007/s11440-021-01419-y http://dx.doi.org/10.1007/s11440-021-01419-y COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2022-08-04T10:12:24.3645110 2022-03-03T10:57:02.3446363 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Gang Ma 1 Shaoheng Guan 0000-0003-1630-5493 2 Qiao Wang 3 Y. T. Feng 4 Wei Zhou 5 Yuntian Feng 0000-0002-6396-8698 6 Shaoheng Guan Guan 7 |
title |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials |
spellingShingle |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials Yuntian Feng Shaoheng Guan Guan |
title_short |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials |
title_full |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials |
title_fullStr |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials |
title_full_unstemmed |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials |
title_sort |
A predictive deep learning framework for path-dependent mechanical behavior of granular materials |
author_id_str_mv |
d66794f9c1357969a5badf654f960275 8be5dace79e94a4d0abd32215a13f806 |
author_id_fullname_str_mv |
d66794f9c1357969a5badf654f960275_***_Yuntian Feng 8be5dace79e94a4d0abd32215a13f806_***_Shaoheng Guan Guan |
author |
Yuntian Feng Shaoheng Guan Guan |
author2 |
Gang Ma Shaoheng Guan Qiao Wang Y. T. Feng Wei Zhou Yuntian Feng Shaoheng Guan Guan |
format |
Journal article |
container_title |
Acta Geotechnica |
container_volume |
17 |
container_issue |
8 |
container_start_page |
3463 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1861-1125 1861-1133 |
doi_str_mv |
10.1007/s11440-021-01419-y |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
url |
http://dx.doi.org/10.1007/s11440-021-01419-y |
document_store_str |
0 |
active_str |
0 |
published_date |
2022-08-01T04:16:50Z |
_version_ |
1763754125687783424 |
score |
11.036706 |