Journal article 1064 views 137 downloads
An observational cohort study to evaluate the use of serum Raman spectroscopy in a rapid diagnosis center setting
Clinical Spectroscopy, Volume: 4, Start page: 100020
Swansea University Authors: Freya Woods, Sue Chandler, Natalia Sikora, Dean Harris , Peter Dunstan
-
PDF | Version of Record
© 2022 The Authors. This is an open access article under the CC BY-NC-ND license
Download (1.38MB)
DOI (Published version): 10.1016/j.clispe.2022.100020
Abstract
Cancer presenting with non-specific vague symptoms remains a clinical challenge. The purpose of this study was to assess the feasibility of serum Raman spectroscopy for cancer detection in a rapid diagnosis center (RDC) setting. The primary aim was to identify significant spectral peaks of change in...
Published in: | Clinical Spectroscopy |
---|---|
ISSN: | 2666-0547 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59793 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Cancer presenting with non-specific vague symptoms remains a clinical challenge. The purpose of this study was to assess the feasibility of serum Raman spectroscopy for cancer detection in a rapid diagnosis center (RDC) setting. The primary aim was to identify significant spectral peaks of change in sera from cancer patients and the secondary aim was to assign molecular species at Raman peaks.In this prospective observation study of a secondary care RDC, patients referred with vague cancer-related symptoms were recruited. Raman spectra of blood sera of 54 patients was obtained. Of these, 10 patients were diagnosed with cancer, and 44 no significant pathology (control). Common spectral increase/decrease between control and cancer was seen in spectral peaks 830 cm−1, 878 cm−1, 1031 cm−1, 1174 cm−1, 1397 cm−1 tentatively attributed to amino acids, carbohydrates, fatty acids, and proteins. Individual differences between cancer and control via statistical analysis identifies 3 peaks with significance for all 10 of the cancer patients. The peaks are 878 cm−1, 1449 cm−1 and 1519 cm−1, tentatively attributed to proteins, amino acids, lipids, fatty acids, glycoproteins, carbohydrates, and carotenoids. Differences are also seen for at least 9 of the cancers in the peaks at 830 cm−1, 851 cm−1, 1127 cm−1, 1174 cm−1, 1270 cm−1, and 1656 cm−1, tentatively attributed to amino acids, lactate, lipids, triglycerides, carbohydrates, and proteins.Raman spectroscopy has the potential to enhance RDC referral criteria through the detection of peak differences seen commonly with different cancer types. Development of Artificial Intelligence (AI) based models could enable rapid detection and discrimination of different cancer types with more data availability. |
---|---|
Keywords: |
Raman Spectroscopy, Cancer, Rapid diagnosis, non-specific symptoms, Diagnostics |
College: |
Faculty of Science and Engineering |
Funders: |
This work was supported through Cancer Research Wales: Raman Spectroscopy and Colorectal Cancer: Transforming the USC Referral Pathway (Registered Charitable Incorporated Organization Number: 1167290). We are grateful to the RDC for facilitating access to their patients. We wish to acknowledge the input of Julie Hepburn and Ian Hills (of Health and Care Research Wales’ Public Involvement Community) for their patient involvement activities. |
Start Page: |
100020 |